蛋白质的来源:带有克隆的T4 DNA连接酶基因的重组大肠杆菌菌株。单位定义:1个单位定义为将100 ng的DNA片段中的50%与粘性末端连接到50 µl 1x 1x DNA连接酶缓冲液后30分钟在23°C分子重量下孵育后所需的50%的DNA片段:55,292 DALTONS质量控制分析:使用2ffliutial serial dilitial doldutial doldiques soge。在1x DNA连接酶反应缓冲液中制作酶批次的稀释液,并添加到含有双束DNA片段和1X DNA连接酶反应缓冲液的20 µL反应中。在23°C下孵育30分钟,停止并在用溴化乙锭染色的1%琼脂糖凝胶上进行分析。蛋白浓度(OD 280)由OD 280吸光度确定。物理纯度,然后进行银色染色检测。通过比较浓缩样品中污染物带的聚集质量与稀释样品中蛋白蛋白蛋白带的质量来评估纯度。单链核酸酶在含有放射性标记的单链DNA底物的50 µL反应中确定,在37°C下孵育4小时4小时。双链外切核酸酶在50 µL反应中确定,该反应含有放射性标记的双链DNA底物和10 µL的酶溶液在37°C下孵育4小时。
摘要 辣椒是公认的富含维生素 C 的水果之一,维生素 C 是各种生理过程不可或缺的关键营养素,包括胶原蛋白合成、骨骼和牙齿形成、伤口愈合以及增强免疫系统抵御感染的能力。维生素 C 是一种水溶性化合物,暴露在空气中时容易降解。因此,必须小心保存辣椒以保持其维生素 C 水平。本研究的主要目的是辨别辣椒成熟度的三个不同阶段(幼熟、半熟和全熟)内的维生素 C 浓度。本研究采用的方法是紫外可见分光光度法,维生素 C 定量的最大波长为 265 nm。这种方法在各个阶段得到的吸光度值分别为 0.696、0.564 和 0.478。定量分析显示,幼辣椒、半熟辣椒和完全成熟辣椒中的维生素 C 浓度分别为 8.1397 ppm、5.9559 ppm 和 4.5313 ppm。这些发现明确表明,与半熟辣椒和完全成熟辣椒相比,幼辣椒中的维生素 C 含量明显更高。辣椒素配体的对接结果分别为吉布斯能 (ΔG)、Ki 和 IC 50 值 -6.14 kkal/mol、31.34 µm 和 19.143 ppm。结果表明,辣椒素与糖原磷酸化酶催化位点表现出良好的相互作用,可作为潜在的抗糖尿病药物。
1. 准直光束测试——准直光束装置可产生波长为 254 nm 的精确、均匀的紫外线输出,用于确定挑战性微生物的紫外线剂量反应曲线。在实验室测试中,对含有挑战性微生物的水样进行照射,并在暴露于不同剂量的紫外线之前和之后测量活微生物的浓度。剂量反应曲线是通过绘制挑战性微生物的对数失活与所施加剂量的关系来绘制的。所施加的剂量是根据测量的紫外线强度、水的紫外线吸光度、水的深度和挑战性微生物在准直光束下的暴露时间来计算的。紫外线剂量反应曲线是挑战性微生物对紫外线敏感度的测量值,并且是微生物所独有的。请注意,准直光束装置使用低压 (LP) 灯,必须使用校正因子来调整剂量反应曲线,以便与中压 (MP) 灯一起使用(见第 6.3 节)。2. 全尺寸反应器测试 – 使用与准直光束测试相同的挑战微生物,在特定操作条件下(即流速、UVT 和 UV 强度)从全尺寸反应器测试中收集对数灭活数据。3. 减量当量剂量 – 减量当量 (RED) 是通过将全尺寸反应器测试的对数灭活结果插入到 UV 剂量反应曲线上来估算的
本研究确定二氧化碳水平上升与全球变暖之间是否存在相关性。历史数据从跨越5亿年的三个不同时间段进行了审查。它表明曲线和趋势过于不同,无法建立联系。从CO 2 /TEMP比率进行观察表明,CO 2和温度在相反的方向上移动42%。许多比率显示为零或接近零值,反映出缺乏响应。的比率的87%显示为负值或接近零值,这极大地否定了相关性。红外光谱显示温室气体在11.67 µm至9.1 µm之间的吸收带非常低,这是一个称为红外大气窗的区域。大多数温室气体吸收了该区域内的小红外线。,该区域是地球表面排放几乎所有红外辐射的地方。即使有微吸光度,水蒸气也会捕获最新的红外辐射。比CO 2的效果比甲烷高84倍,比甲烷高4.47亿倍,比臭氧多452千倍,比一氧化二氮高230万倍。气候变化的政府间小组(IPCC)和美国EPA排除了水蒸气,因为它与人造活动无关。他们报告说,水蒸气和云只是CO 2的反馈机制。云反映了来自太阳的辐射。北半球比南半球的温暖2.7˚F。从1982年到2018年,世界云覆盖率下降了4.1%。计算表明,这可能是2.7˚F的2.4˚F。研究表明,最近温度的大部分升高(89.9%)是由于云较少。关键字
组合片段的序列和所得的吸光度光谱用于开发计算模型,以预测片段的进一步组合,从而导致其他新型颜色。用适配器(TwistBioscience®,South San Francisco,CA)重新排序基因片段,以进行扩增,并使用Q5®热启动High Fidelity 2X Master Mix(NEB#M0494)在50 µL反应中放大了PCR,并使用Spri®Beads清洁,并在100 µL水中洗净。使用Opentrons OT-2,将包含目的地矢量的主混合物和15 µL Nebridge Golden Gate组件套件(BSAI-HFV2)的组件组件组装在4°C温度模块上,然后通过涡旋将其混合在甲板上。然后,液体处理程序在没有温度控制的情况下将主混合物分布在96孔板上。使用OT-2,在3小时以上(总计576个零件)的过程中,将每个组件的6个零件移动。然后将板密封,并进行37°C的30个循环1分钟16°C 1分钟,然后在60°C的最终持有5分钟。2 µL转化为20 µL T7 Express Compation E.Coli。5 µL的稀释或浓缩转化铺在LB KAN上,并在37°C下生长过夜。菌落生长后,将它们从孵化器中取出,并允许在台式上开发颜色过夜,然后在4°C的冰箱中发育。
摘要:表现出激素耦合的有机染料的聚集体具有广泛的应用,包括医学成像,有机光伏和量子信息设备。可以修改染料单体的光学特性,作为染料骨料的基础,以增强激子耦合。Squaraine(SQ)染料对于这些应用的吸光度很强,在可见范围内具有吸引力。先前已经检查了取代基类型对SQ染料光学特性的影响,但尚未研究各种取代基因位置的影响。在这项研究中,使用密度功能理论(DFT)和时间依赖性密度功能理论(TD-DFT)来研究SQ取代的位置与染料聚集系统性能性能的几个关键特性,即差静态偶极子(∆ D),过渡次要次偶极力矩(µ),Hydrophobicition和Hydrophobicity和the grout(ΔD)。我们发现,沿染料的长轴连接取代基可能会增加µ,而放置长轴则显示出增加∆ d并减少θ。θ的降低很大程度上是由于∆ d方向的变化,因为µ的方向不受取代位置的显着影响。疏水性降低时,当电子粉状取代基靠近吲哚美氨酸环的氮。这些结果提供了对SQ染料的结构与毛皮关系的见解,并指导染料单体的设计,用于具有所需属性和性能的聚集系统。
蛋白质的来源:一种重组大肠杆菌菌株,携带来自嗜热有机体Thermus aquaticus YT-1的TAQ DNA聚合酶基因。单位定义:1个单位定义为将在75°C的30分钟内将10 nmol的DNTP纳入酸 - 不溶性材料的酶。分子量:93,910 Daltons质量控制分析:使用2倍连续稀释方法测量单位活动。在1X反应缓冲液中制成酶的稀释液,并将其添加到含有小腿胸腺DNA,25 mM TAPS(pH 9.3),50 mM KCl,2.0mm MGCL2,1 mM DTT,3H-DTTP和100 µm DNTP的50 µL反应中。 在75°C下孵育10分钟,浸入冰上,并使用Sambrook和Russell的方法进行分析(Molecular Cloning,V3,2001,pp。 A8.25-A8.26)。 蛋白浓度(OD 280)由OD 280吸光度确定。 通过浓缩和稀释酶溶液的SDS-PAGE评估物理纯度,然后进行银色染色检测。 通过比较浓缩样品中污染物带的聚集质量与稀释样品中蛋白蛋白蛋白带的质量来评估纯度。 单链核酸酶在含有放射性标记的单链DNA底物的50 µL反应中确定,在37°C下孵育4小时4小时。 双链外切核酸酶在50 µL反应中确定,该反应含有放射性标记的双链DNA底物和10 µL的酶溶液在37°C下孵育4小时。 双链核酸内切酶在50 µL反应中确定,该反应含有0.5 µg质粒DNA和10 µL的酶溶液在37°C下孵育4小时。在1X反应缓冲液中制成酶的稀释液,并将其添加到含有小腿胸腺DNA,25 mM TAPS(pH 9.3),50 mM KCl,2.0mm MGCL2,1 mM DTT,3H-DTTP和100 µm DNTP的50 µL反应中。在75°C下孵育10分钟,浸入冰上,并使用Sambrook和Russell的方法进行分析(Molecular Cloning,V3,2001,pp。A8.25-A8.26)。蛋白浓度(OD 280)由OD 280吸光度确定。物理纯度,然后进行银色染色检测。通过比较浓缩样品中污染物带的聚集质量与稀释样品中蛋白蛋白蛋白带的质量来评估纯度。单链核酸酶在含有放射性标记的单链DNA底物的50 µL反应中确定,在37°C下孵育4小时4小时。双链外切核酸酶在50 µL反应中确定,该反应含有放射性标记的双链DNA底物和10 µL的酶溶液在37°C下孵育4小时。双链核酸内切酶在50 µL反应中确定,该反应含有0.5 µg质粒DNA和10 µL的酶溶液在37°C下孵育4小时。
大肠杆菌和金黄色葡萄球菌是导致全球传染病的细菌。随着当今医学的发展,抗生素耐药性病例不断增加,人们越来越需要探索具有杀菌或抑菌特性的替代物质,包括来自天然来源的物质。红姜 (Zingiber officinale var. rubrum) 以其药用特性而闻名,尤其是其抗菌作用。这项研究旨在评估红姜抑制大肠杆菌和金黄色葡萄球菌生长的能力。进行了植物化学测试以确定提取物中的活性化合物,同时使用最低抑菌浓度 (MIC) 评估抗菌活性。用分光光度计和扫描电子显微镜 (SEM) 研究了抗菌作用机制。结果表明,红姜提取物含有生物碱、黄酮类化合物、皂苷、单宁和萜类化合物等活性化合物。大肠杆菌的最低抑菌浓度为 125 μg/ mL,金黄色葡萄球菌的最低抑菌浓度为 500 μg/ mL。在 260 nm 和 280 nm 吸光度下测量,添加 MIC 1 和 MIC 2 的红姜乙醇提取物与对照组相比显著影响细胞渗漏 (p<0.01)。SEM 分析显示,用红姜提取物处理的细菌细胞出现受损和空泡。因此,可以得出结论,红姜提取物对大肠杆菌和金黄色葡萄球菌的生长具有抑制作用,可以推荐作为治疗传染病的天然抗生素的替代品。
组合片段的序列和所得的吸光度光谱用于开发计算模型,以预测片段的进一步组合,从而导致其他新型颜色。用适配器(TwistBioscience®,South San Francisco,CA)重新排序基因片段,以进行扩增,并使用Q5®热启动High Fidelity 2X Master Mix(NEB#M0494)在50 µL反应中放大了PCR,并使用Spri®Beads清洁,并在100 µL水中洗净。使用Opentrons OT-2,将包含目的地矢量的主混合物和15 µL Nebridge Golden Gate组件套件(BSAI-HFV2)的组件组件组装在4°C温度模块上,然后通过涡旋将其混合在甲板上。然后,液体处理程序在没有温度控制的情况下将主混合物分布在96孔板上。使用OT-2,在3小时以上(总计576个零件)的过程中,将每个组件的6个零件移动。然后将板密封,并进行37°C的30个循环1分钟16°C 1分钟,然后在60°C的最终持有5分钟。2 µL转化为20 µL T7 Express Compation E.Coli。5 µL的稀释或浓缩转化铺在LB KAN上,并在37°C下生长过夜。菌落生长后,将它们从孵化器中取出,并允许在台式上开发颜色过夜,然后在4°C的冰箱中发育。
在具有抗氧化潜力的天然提取物中,西印度樱桃果实是生物活性化合物的重要来源。这项研究的目的是评估在环保条件下生产的微胶囊化和冻干的未成熟西印度樱桃果实提取物的抗氧化能力。测定了体外抗氧化活性,并将产品应用于油包水乳化液中。通过 232 nm 处的吸光度和氢过氧化物含量来测量脂质氧化产物。还研究了将西印度樱桃微粒添加到乳化液中所产生的感官特性。西印度樱桃果实的水提取物显示出高浓度的抗坏血酸(32.52 至 41.11 mg.100 mg − 1 )和还原能力;喷雾干燥后抗坏血酸的保留率为 88%。在乳化液中添加西印度樱桃产品后观察到氧化抑制:在加速条件下对照样品中 9 天后的氢过氧化物含量为 14.03 mmol。 L − 1 和 3.02 至 3.60 mmol。L − 1 在含有 TBHQ 或西印度樱桃微粒(100-200 mg.kg − 1 )的样品中。此外,与合成抗氧化剂相比,微粒没有表现出感官效果。从绿色水果中简单水提取后获得的西印度樱桃微粒是有效的,是脂质乳剂氧化稳定性的潜在新成分。