在简单立方晶格上存在吸引且不可穿透的表面的情况下,用数字方法研究了稀释极限下均聚双链 (ds) 脱氧核糖核酸 (DNA) 的熔化。DNA 的两条链用两个自避行走建模,能够在互补位点相互作用,从而模拟碱基配对。不可穿透表面的建模方法是将 DNA 构型限制在 z 0 平面,单体在 z = 0 处具有吸引相互作用。此外,我们考虑了 ds 段在 z = 0 占据的两种变体,其中计算了一个或两个表面相互作用。这种考虑具有重大影响,甚至会改变吸附状态下结合相的稳定性。有趣的是,吸附从临界变为一级,其修正指数与熔化转变相一致。对于模拟,我们使用修剪和丰富的 Rosenbluth 算法。
在气体绝缘开关设备(GIS)中检测SF 6绝缘气体分解成分对于评估GIS操作状态和确保设备安全至关重要。在这项研究中,我们使用密度功能理论(DFT)计算探索了SF 6主要分解产物(SO 2,SOF 2和SO 2 F 2)的吸附。研究了PTN 3 -GN表面上三个吸附气体的吸附结构,能量和电荷转移。气体吸附结果表明,PTN 3 -GN对于这些气体分子具有较高的吸附能力,并且吸附能分别为-2.55,-2.54和-3.54 eV。探索气体分子与PTN 3 -GN结构之间的相互作用机制,比较和分析气体吸附之前和之后系统状态的总和和部分密度。PTN 3 -GN与气体分子强烈相互作用,导致PT掺杂剂和气体分子之间的高轨道杂交。PTN 3 -GN对于气体分子具有良好的吸附性能,并且在GIS分解成分检测和故障诊断中具有良好的应用前景。
摘要:在1N HCl和1N H 2中,低碳钢在黑色Vitex Nigundo Leaf(BVNL)提取物作为绿色抑制剂的情况下研究了4个酸性培养基的腐蚀抑制作用。使用质量损失技术,电化学阻抗光谱和电力动力学极化测量研究了温度,时间和抑制剂浓度的影响。黑色Vitex Nigundo叶(BVNL)提取物的抑制效率随着BVNL提取物浓度的增加而增加,但随温度而降低。极化测量结果表明,BVNL提取物在酸介质中充当阳极型抑制剂。BVNL提取物在低碳钢上的吸附遵守1N HCl的Langmuir吸附等温线,并将Freundlich吸附等温线拟合了1N H 2 SO SO SO介质。BVNL提取物的最大抑制效率(HCl中为90.55%,H 2 SO 4中的83.14%)在308 K的浓度下,在SEM和FT-IR等表面研究中的浓度为0.075 g/L(最佳浓度)。因此,BVNL提取物充当1N HCl和1N H 2中的碳钢的生态友好,有效的绿色腐蚀抑制剂,因此4酸培养基。
该期刊文章的自存档后印本可在林雪平大学机构知识库 (DiVA) 找到:http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-192317 注意:引用该作品时,请引用原始出版物。 Rittiruam, M., Setasuban, S., Noppakhun, J., Saelee, T., Ektarawong, A., Aumnongpho, N., Boonchuay, S., Khajondetchairit, P., Praserthdam, S., Alling, B., Praserthdam, P., (2023),第一原理密度泛函理论和机器学习技术用于预测 PtPd 基高熵合金催化剂上的水吸附位点,高级理论与模拟,6(4),2200926。https://doi.org/10.1002/adts.202200926
重金属被认为是最重要的环境问题,因为它们是废水污染的主要来源。人类的活动和工业化主要导致将重金属污染物排放到水资源中,污染它们并危及人类和环境的健康。已经进行了许多关于废水处理程序的研究,例如沉淀,蒸发,离子交换,膜过程和电镀。但是,这些传统方法是昂贵的,不可再生的,并且会产生二次污染物。我们专注于本综述中的生物吸附,因为它被认为是消除从水源中消除有害金属离子的最有希望的替代策略。生物吸附是一种物理过程,它采用离子交换,表面络合和降水来使用较便宜的替代生物学材料作为生物吸附剂。各种生物量在内,包括微生物(细菌和真菌),藻类和植物产品已被用作金属生物吸附的生物吸附剂。与局部微生物群的生物吸收激发了人们对从废水中去除有害重金属的极大兴趣,而近年来没有产生任何有害后果。微生物,尤其是真菌(均为活和死亡),被认为是一种潜在的低成本吸附剂,用于溶液中的重金属离子去除。真菌生物量的生物吸附行为由于其许多优势而引起了人们的注意。因此,需要进行额外的研究以将其完全利用在废水处理中。
近年来,原位和原位同步辐射高分辨率粉末X射线衍射(HR-PXRD)实验已被认为是一种强有力的工具,可以揭示各种无机、[17,23,24]有机、[25,26]和金属有机多孔材料中的主要相互作用和主要吸附位点[16,20–22]。[15,16,27,28]尽管有这些例子,但迄今为止获得的信息仅限于客体分子的定位和主体框架的修改。直到最近,[16,17,29]才有人努力模拟和理解整个吸附过程,包括构建吸附等温线。然而,这种方法还没有发展到极限,除了晶体结构测定、主体-客体相互作用描述和客体量化之外,还不能研究其他性质,如吸附过程的热力学。在这项工作中,我们展示了可以从目前尚未充分利用的 PXRD 数据中提取大量隐藏但易于获取的信息
摘要:采矿和加工磷酸盐是包括阿尔及利亚在内的一些发展中国家的经济基本分支之一。常规的矿石益处方法可能会通过消耗大量的水资源(洗涤和流量),潜在的危险化学物质和热能来损害环境。矿水中含有有毒金属,释放后会干扰环境功能。因此,根据环境需求,应逐渐用安全的生物技术过程逐渐取代常规方法。这项研究旨在研究从Djebel Onk Ore(Algeria)中分离出的天然微生物的生物吸附和粘附能力。所检查的细菌菌株的金属积累效率有所不同。磷酸盐与天然菌株HK4的孵育显着增加了Mg和Cd的恢复(分别为pH 7、8147.00和100.89 µg/g/g -1)。HK4菌株还显示出比枯草芽孢杆菌的参考菌株对矿石颗粒的粘附更好。因此,使用天然HK4菌株时,生物吸附可以更有效,该菌株可以在pH 4-10范围内去除CD和/或MG。此外,关于HK4独特的粘附能力,可以在生物流动方法的设计中考虑菌株,以及开发一种环保的矿石和流动性废物造成的方法。
磷 (P) 是植物生长必需的营养物质,是不断增长的世界人口增加粮食供应所必需的。然而,农业生产中磷的径流和淋溶会引发藻华、水体富营养化和水质问题 (Bol 等人,2018 年;Withers 和 Haygarth,2007 年)。由于土壤中磷的残留,减少施肥量可能不足以在短期至中期内减少地表水的磷负荷 (Barcala 等人,2020 年;Chardon 和 Schoumans,2007 年;Mellander 等人,2016 年;Sharpley 等人,2013 年)。为了更快地降低地表水中的磷含量,我们需要采取缓解措施,减少耕地磷的扩散输入(Mendes,2020;Penn等,2017;Schoumans等,2014)。这些缓解措施应具有成本效益,并且不占用或很少占用宝贵的耕地,以便农民容易接受。铁包砂 (ICS) 是一种磷酸盐 (PO 4 ) 吸附材料,它是饮用水生产的副产品(Chardon 等人,2012 年;Sharma 等人,2002 年;Van Beek 等人,2020 年)并且可放置在管道排水沟周围或场边缘过滤器中以去除 PO 4 ,不占用额外空间(Chardon 等人,2021 年;Groenenberg 等人,2013 年;Lambert 等人,2020 年;Vandermoere 等人,2018 年)。ICS 涂层中的铁 (Fe) 是在快速砂滤器顶部的砂粒周围形成的,当快速砂滤器去除悬浮的 Fe(氢氧化)氧化物时形成的,这些氧化物是在缺氧含 Fe(II) 地下水曝气后或添加 Fe 盐去除有机物后形成的。 ICS 兼具良好的吸附性能和较高的水力传导率。这些特性加上其低成本、丰富的来源,使其成为大规模 PO 4 去除过滤器的理想材料 (Chardon 等人,2012 年;Vandermoere 等人,2018 年)。
双链DNA(DsDNA)分子在氧化石墨烯(GO)表面上的吸附动力学非常重要,对于在生物传感器,生物医学和材料科学中的DNA/GO功能结构的应用至关重要。在这项工作中,分子动力学模拟用于检查GO表面上不同长度DsDNA分子(从4 bp到24 bp)的吸附。dsDNA分子可以通过末端底部吸附在GO表面并站立在GO表面上。对于短dsDNA(4 bp)分子,双螺旋结构被部分或完全损坏,吸附动力学受到短dsDNA的结构漏气的影响,并且在GO表面上氧化基团的分布。对于长dsDNA分子(从8 bp到24 bp)的吸附是稳定的。通过非线性插入DsDNA分子和GO表面之间的接触角,我们发现,如果DSDNA分子的长度长于54 bp,则吸附在GO表面上的DSDNA分子可以平行于GO表面。我们将这种行为归因于dsDNA分子的灵活性。随着长度的增加,dsDNA分子的灵活性也会增加,并且这种增加的功能使吸附的dsDNA分子更有机会使用自由末端来达到GO表面。这项工作提供了DSDNA分子在GO表面上吸附的全部图片,对于DNA/GO基生物传感器的设计应该有益。
请注意,由于它们的高负电荷,我们排除了两个裸露的DNA(U DD <0)之间吸引人的可能性。上面的这三个条件可以在物理上理解如下。由于DNA无法单独与二氧化硅结合,因此结合剂和DNA之间的吸引力(条件2)将确保DNA粘在结合剂上,而复合物(DNA+结合剂)与二氧化硅结合。结合剂必须与二氧化硅结合才能发生(条件1)。但是,如果两种结合剂之间存在吸引力,则在两个结合剂之间形成复合物,而不是DNA结合剂复合物(条件3),它在能量上更有利。这将降低DNA的结合概率与二氧化硅。在这里值得一提的是,在这项工作中为参数扫描所选择的范围由我们较早的作品12,43指导,其中进行了广泛的无偏见和偏见的分子动力学模拟(伞采样模拟),以评估参数。在此,由于系统的复杂性,我们无法评估参数的确切值,因此尝试了参数扫描。在上述所有计算中,我们将结合剂与DNA(rθ)的浓度比为5。