给予prevenar®13或vaxNeuvance®的2剂时间表<37周的妊娠期与SMPC中详述的4剂时间表相反,但符合疫苗接种过早婴儿和绿本书第25章的建议。给予一剂prevenar®13或vaxNeuvance®的一剂主要系列,与SMPC中详述的2或3剂量主要时间表背道而驰,但符合绿书的建议和第25章。在12个月至2岁之间的先前未接种的个体的单剂时间表与Prevenar®13和VaxNeuvane®SMPC中详述的2剂时间表背道而驰,但符合国家建议对具有不确定或不完整的免疫状态和绿色书的第25章的个人疫苗接种的国家建议。在12个月至2岁之间的部分免疫个体的单剂量时间表与PreVenar®13或VaxNeuvance®的SMPC不一致,但与对具有不确定或不完整免疫状态不确定或不完整的免疫状态和绿色书的第25章的个人的国家建议相符。应根据下面的存储部分中详细介绍的条件存储疫苗。但是,如果这些疾病的无意或不可避免的偏差,请参阅疫苗事件指导。根据适用于继续使用的这些准则评估疫苗的情况,这将构成本PGD的标签外管理。建议在标签外推出疫苗的情况下,作为同意程序的一部分,请告知个人,父母或护理人员,该疫苗是在产品许可之外提供的,但根据国家指导。
抽象的氧化石墨烯(GO)和碳纳米管(CNT)以不同的相互比率加载到聚(乙烯基二氟二氟二氟丙烯)中(PVDF-CO-HFP)基质和电型基质(PVDF-CO-HFP)基质和静电剂,这些基质被评估为与智能毒性的智能毒性(MB),同时是甲基含量的含量(MB)(MB检测染料量。结果表明,在增加GO含量时,吸附能力会增强,这对湿润和活动面积有益。平衡吸附是由Langmuir等温模型准确预测的,并且此处实现的最大能力在120至555 mg/g之间,取决于配方,高于报告的系统。研究了此类材料的结构和性能的演变,例如染料吸附的函数。结果表明,MB分子以剂量依赖性方式促使样品的电导率增加。MATS仅包含CNT,在显示出最差的吸附性能的同时,表现出最高的电气性能,在染料量的函数中显示出有趣的变化,其电响应的变化具有线性响应和高灵敏度(309.4 µs cm -1 mg -1),范围为0-235 µg of dye dye dye ad sorsors。超出了在受污染的水和吸附剂饱和状态中监测少量MB的可能性之外,甚至可以利用此功能将废物吸附剂转化为高增值的价值产物,包括用于检测低压值的灵活传感器,以检测压力低,人类运动等。
polyssaccharide do serotype 1 do pneumococcos 1.2 2.2 µg polyissaccharide do serotype 3 do pneumococci 1.2 2.2 µg polyissaccharide do serotype 4 do pneumococos 1.2 2.2 µg polyssaccharide do serotype 5 do pneumococos 1,2 2.2 2.2 µg Polyssaccharide do serotype 6a do pneumococcos 1.2 2.2 µg polyissaccharide do serotype 6b do pneumococos 1.2 4.4 µg polyissaccharide do serotype 7f do pneumococos 1.2 2.2 µg polyssaccharide do serotype 8 do pneumococos 1.2 2.2 2.2 µg Polyssaccharide do serotype 9V do pneumococcos 1.2 2.2 µg polyissaccharide do serotype 10a do pneumococos 1.2 2.2 µg polyissaccharide do serotype 11a do pneumococos 1.2 2.2 µg polyssaccharide do serotype 12f do pneumococos 1,2 2.2 µg Polyssaccharide do serotype 14 do pneumococcos 1.2 2.2 µg polyissaccharide do serotype 15b do肺炎球菌1.2 2.2 µg多糖类DO血清型18c做肺炎可肺癌1.2 2.2 µg多肌糖do do serotype 19多型19f do do Serotype 19f DO肺炎肺炎1.2肺球可1.2 2.2 µg多糖糖DO血清型33F DO肺炎球菌1.2 2.2 µg div div>
Q(mg co 2 /g ads)弯曲107 43 0.11 0.11 0.026 14.0 mont 245 52 0.33 0.043 0.043 10.1 paly 137 42 0.32 0.032 0.033 12.0 Sapo 151 69 0.16 0.16 0.16 0.040 15.40 15.4 SEPI 274 156 056 0.42 0.087 40.7 40.7 < /div>>
Ahrens,B.,Braakhekke,M.C.,Guggenberger,G.,Schrumpf,M。,&Reichstein,M。(2015年)。 吸附,DOC传输和微生物相互作用对土壤有机碳概况的14 C年龄的贡献:校准过程模型的见解。 土壤生物学和生物化学,88,390–402。 Amato,M。,&Ladd,J。N.(1992)。 土壤中14个C标记的葡萄糖和豆类材料的分解:有机残留C和微生物生物量的积累的特性C.土壤生物学和生物化学,24(5),455-464。 Amézketa,E。(1999)。 土壤骨料稳定性:评论。 可持续农业杂志,14(2-3),83–151。 Angst,G.,John,S.,Mueller,C.W.,Kögel-Knabner,I。和Rethemeyer,J。 (2016)。 使用多生物标志物方法来追踪有机碳的源和空间分布。 科学报告,6(1),1-12。 Angst,G.,Messinger,J.,Greiner,M.,Häusler,W.,Hertel,D.,Kirfel,K.,Kögel-Knabner,I. 土壤有机碳在表层土壤中,由母体伴侣控制,根际中的碳输入以及微生物衍生的化合物控制。 土壤生物学和生物化学,122,19–30。 Barthès,B。和Roose,E。(2002)。 总稳定性是土壤对径流和侵蚀的敏感性的指标;在多个级别进行验证。 Catena,47(2),133–149。 Batjes,N。H.(1996)。 世界土壤中的总碳和氮。 欧洲土壤科学杂志,47(2),151–163。 (2019)。Ahrens,B.,Braakhekke,M.C.,Guggenberger,G.,Schrumpf,M。,&Reichstein,M。(2015年)。吸附,DOC传输和微生物相互作用对土壤有机碳概况的14 C年龄的贡献:校准过程模型的见解。土壤生物学和生物化学,88,390–402。Amato,M。,&Ladd,J。N.(1992)。 土壤中14个C标记的葡萄糖和豆类材料的分解:有机残留C和微生物生物量的积累的特性C.土壤生物学和生物化学,24(5),455-464。 Amézketa,E。(1999)。 土壤骨料稳定性:评论。 可持续农业杂志,14(2-3),83–151。 Angst,G.,John,S.,Mueller,C.W.,Kögel-Knabner,I。和Rethemeyer,J。 (2016)。 使用多生物标志物方法来追踪有机碳的源和空间分布。 科学报告,6(1),1-12。 Angst,G.,Messinger,J.,Greiner,M.,Häusler,W.,Hertel,D.,Kirfel,K.,Kögel-Knabner,I. 土壤有机碳在表层土壤中,由母体伴侣控制,根际中的碳输入以及微生物衍生的化合物控制。 土壤生物学和生物化学,122,19–30。 Barthès,B。和Roose,E。(2002)。 总稳定性是土壤对径流和侵蚀的敏感性的指标;在多个级别进行验证。 Catena,47(2),133–149。 Batjes,N。H.(1996)。 世界土壤中的总碳和氮。 欧洲土壤科学杂志,47(2),151–163。 (2019)。Amato,M。,&Ladd,J。N.(1992)。土壤中14个C标记的葡萄糖和豆类材料的分解:有机残留C和微生物生物量的积累的特性C.土壤生物学和生物化学,24(5),455-464。Amézketa,E。(1999)。 土壤骨料稳定性:评论。 可持续农业杂志,14(2-3),83–151。 Angst,G.,John,S.,Mueller,C.W.,Kögel-Knabner,I。和Rethemeyer,J。 (2016)。 使用多生物标志物方法来追踪有机碳的源和空间分布。 科学报告,6(1),1-12。 Angst,G.,Messinger,J.,Greiner,M.,Häusler,W.,Hertel,D.,Kirfel,K.,Kögel-Knabner,I. 土壤有机碳在表层土壤中,由母体伴侣控制,根际中的碳输入以及微生物衍生的化合物控制。 土壤生物学和生物化学,122,19–30。 Barthès,B。和Roose,E。(2002)。 总稳定性是土壤对径流和侵蚀的敏感性的指标;在多个级别进行验证。 Catena,47(2),133–149。 Batjes,N。H.(1996)。 世界土壤中的总碳和氮。 欧洲土壤科学杂志,47(2),151–163。 (2019)。Amézketa,E。(1999)。土壤骨料稳定性:评论。可持续农业杂志,14(2-3),83–151。Angst,G.,John,S.,Mueller,C.W.,Kögel-Knabner,I。和Rethemeyer,J。(2016)。使用多生物标志物方法来追踪有机碳的源和空间分布。科学报告,6(1),1-12。Angst,G.,Messinger,J.,Greiner,M.,Häusler,W.,Hertel,D.,Kirfel,K.,Kögel-Knabner,I.土壤有机碳在表层土壤中,由母体伴侣控制,根际中的碳输入以及微生物衍生的化合物控制。土壤生物学和生物化学,122,19–30。Barthès,B。和Roose,E。(2002)。 总稳定性是土壤对径流和侵蚀的敏感性的指标;在多个级别进行验证。 Catena,47(2),133–149。 Batjes,N。H.(1996)。 世界土壤中的总碳和氮。 欧洲土壤科学杂志,47(2),151–163。 (2019)。Barthès,B。和Roose,E。(2002)。总稳定性是土壤对径流和侵蚀的敏感性的指标;在多个级别进行验证。Catena,47(2),133–149。Batjes,N。H.(1996)。 世界土壤中的总碳和氮。 欧洲土壤科学杂志,47(2),151–163。 (2019)。Batjes,N。H.(1996)。世界土壤中的总碳和氮。欧洲土壤科学杂志,47(2),151–163。(2019)。Baumert,V。L.,Vasilyeva,N。A.,Vladimirov,A。A.,Meier,I。C.,Kögel-Knabner,I。,&Mueller,C。W.(2018)。 根部散发诱导真菌在地下土壤中促进的土壤大型聚集。 环境科学领域,6,140。https://doi.org/10.3389/fenvs.2018.00140 Benard,P.,Zarebanadkouki,M.,Brax,M.,M.,M.,Kaltenbach,R. Carminati,A。 土壤中的微水域壁细分市场:粘液和EP如何改变根际和其他生物热点的生物物理特性。 vadose Zone Journal,18(1),1-10。 Bimüller,C.,Mueller,C.W.,VonLützow,M.,Kreyling,O.,Kölbl,A. (2014)。 在森林表土的土壤粒度分数中脱钩的碳和氮矿化。 土壤生物学和生物化学,78,263–273。 Brunauer,S.,Emmett,P。H.,&Teller,E。(1938)。 多分子层中气体吸附。 美国化学学会杂志,60(2),309–319。A.,Meier,I。C.,Kögel-Knabner,I。,&Mueller,C。W.(2018)。根部散发诱导真菌在地下土壤中促进的土壤大型聚集。环境科学领域,6,140。https://doi.org/10.3389/fenvs.2018.00140 Benard,P.,Zarebanadkouki,M.,Brax,M.,M.,M.,Kaltenbach,R. Carminati,A。土壤中的微水域壁细分市场:粘液和EP如何改变根际和其他生物热点的生物物理特性。vadose Zone Journal,18(1),1-10。Bimüller,C.,Mueller,C.W.,VonLützow,M.,Kreyling,O.,Kölbl,A.(2014)。在森林表土的土壤粒度分数中脱钩的碳和氮矿化。土壤生物学和生物化学,78,263–273。Brunauer,S.,Emmett,P。H.,&Teller,E。(1938)。多分子层中气体吸附。美国化学学会杂志,60(2),309–319。
摘要。为了解决当今最严重的环境问题之一,减少了碳足迹,全球已将注意力转移到二氧化碳(CO 2)存储中,作为潜在的解决方案。由于其独特的功能,页岩是该领域最有趣的选择之一。吸附是CO 2通过页岩中的方法,尤其是在其超临界条件下的方法。吸附等温线模型可用于推断这种吸附的行为和机制。Langmuir,Freundlich,Dubinin-Astakhov(D-A)和Brunauer-Emmett-Teller(BET)模型是在页岩上可用于CO 2建模的众多模型之一。我们试图将这些模型拟合到本研究中从文献来源收集的实验数据中,集中在中国各个地方的四个独立的页岩样本上。是来自志留纪longmaxi组的LMX1和LMX2,来自Sichuan盆地的Ordovician Wufeng地层的WF1,以及Ordos盆地Yanchang组的YC。这些页岩的总有机碳(TOC)含量为3.19至4.27。在三个不同的温度下获得了用于拟合模型的实验数据:35、45和55°C。Langmuir和D-A型号为所有样品和温度提供了最适合数据的拟合。r²值0.93429(对于35°C时的YC岩石)至0.99287(对于WF1在35°C时为WF1),在35°C下为0.88879至0.99201 LMX1。这些模型的理论基础是代表页岩上超临界CO 2的物理性质和吸附动力学,这是其性能的原因。最后,这项研究增加了我们对页岩上CO 2吸附的理解,为未来的研究和CO 2存储中的潜在实际用途提供了有用的见解。但是,需要进行更多的研究,以完全了解各种页岩中CO 2吸附的机制和影响因素,以及开发用于预测这种行为的模型。
致谢 本报告由美国环保署水务办公室工程与分析部的 S. Bekah Burket 和 Adrian Hanley 编写,通用动力信息技术公司 (GDIT) 的 Mirna Alpizar 和 Harry McCarty 协助编写。美国环保署感谢多家组织和个人在开发和验证水样中可吸附有机氟检测方法草案方面提供的支持,包括美国环保署工作组成员、原始程序的开发人员、提供大量废水样本的组织,以及美国环保署的支持承包商人员,他们在研究期间监督日常运营并协助美国环保署编写本报告。至少包括以下内容:
摘要。在这项研究中,通过氧化石墨烯(GO)研究了时间和剂量对若丹明B(RHB)吸附的影响。通过将go分散体混合到RHB溶液中,通过改变rhb的搅拌时间和质量比:GO来完成吸附实验。通过使用UV-VIS Spectofotometer进行了表征。实验结果表明,搅拌时间会影响吸附的吸附物的量。搅拌的时间越长,在GO表面吸收的Rhb吸附越多。在前5分钟吸收了多达51%,第360分钟后吸收了多达61%。另外,所使用的GO质量量会影响RHB去除次数,使用GO质量越多,RHB在GO表面上的吸附越多。对于RHB质量比:GO = 1:1获得了由0.25 mg质量质量吸附的RHB数量,而GO质量为79%,而GO质量为79%。
通过执行密度功能理论(DFT)计算来研究非甾体类抗炎药的吸附,提供了抽象的药物输送见解。布洛芬(IBU),由铁掺杂的碳化硅(FSIC)石墨烯单层。在这方面,优化了IBU,SIC和FSIC的单个模型以获得其稳定的几何形状和特征,其中为增强的FSIC石墨烯单层发现了出色的成就,可用于原始的SIC石墨烯单层,以与IBU物质相互作用。随后,通过重新调整Bimolecular模型来获得IBU@SIC和IBU@FSIC复合物,并以-1.44 kcal/kcal/kcal/kcal/kcal/mol和-43.14 kcal/mol/mol/mol,相应地,对IBU的相互作用和SIC和SIC和FSIC的单层相互作用的形成进行了研究。此外,还发现了铁掺杂区域在管理FSIC和IBU对应物之间的相互作用方面的显着作用。o…fe相互作用在IBU@FSIC复合物中的存在得到了分子(QTAIM)分析中原子量子理论的结果肯定。电子分子轨道结果表明,与SIC石墨烯单层相比,FSIC石墨烯单层较软,可以更好地参与与IBU物质的相互作用。比较了态度(DOS)图(DOS)图和能量差距(GAP)距离的距离(GAP)的距离(GAP)的距离(GAP)距离与单一石墨烯单层与复杂状态的边界分子水平的距离相比,FSIC比SIC更容易IBU检测IBU检测。作为最后的说明,在该领域进一步研究后,发现了IBU@FSIC复合物的适用性,可作为拟议的药物输送平台工作。
摘要:纳米纤维素是一种基于生物的材料,在水纯化领域具有巨大的潜力。可能用作从溶液中去除金属离子的关键吸附剂材料。然而,尚不清楚吸附在纤维素表面上的金属离子的结构。这项工作的重点是使用异常的小角X射线散射(ASAXS)定量地确定带负电荷的箱子型纤维素纳米晶体(CNC)的不同货架的金属离子的三维分布。这些分布会影响这些材料中的水和离子通透性。数据表明,将CNC表面的羧酸盐密度从740 mmol/kg增加到1100 mmol/kg改变了吸附离子的结构的性质,从单层变成了单层结构。单层在CNC纳米颗粒周围建模为船尾层,而多层结构则建模为纳米颗粒周围柱状层顶部的弥漫层。在船尾层中,最大离子密度从1680升至4350 mmol的RB + /(CNC的kg),随着纳米颗粒表面上的羧酸盐密度的增加。此外,数据表明,CNC可以利用多种机制(例如静电吸引力和交际效应)来吸附不同价值的植物。通过了解吸附金属离子的空间组织,可以进一步优化基于纤维素的吸附剂的设计,以提高分离应用中的吸收能力和选择性。关键字:纤维素纳米晶,吸附,异常小角X射线散射,吸附剂,水净化,离子交换a