3。脱离Bellman的完整性:通过基于模型的返回条件的监督学习[链接] Zhaoyi Zhou,Chuning Zhu,Runlong Zhou,Qiwen Cui,Abhishek Gupta,Simon S. Du ICLR 2024 2024年海报我们研究了Al Al Al Al的长度和弱点。4。强化方差学习中的尖锐方差界限:在随机和确定性环境中两全其美[link] Runlong Zhou,Zihan Zhang,Simon S. Du ICML 2023海报我们提供了一个系统的研究研究,对基于模型和模型的强化学习的方差依赖性遗憾界限,用于制作模型和模型的增强范围。 提出的基于模型的算法既适用于随机和确定性MDP。 5。 潜在马尔可夫决策过程的依赖于方差的和无水平的加固学习[链接] Runlong Zhou,Ruosong Wang,Simon S. Du ICML 2023海报我们为潜在MDPS提供了算法框架(可见上下文),从而实现了第一台无线的最小值遗憾。 我们通过使用对称技术为LMDP提供了一种新颖的LMDP遗憾下限来补充这项研究。 6。 了解在线组合优化的政策优化中的课程学习[链接] Runlong Zhou,Zelin HE,Yuandong Tian,Yi Wu,Yi Wu,Simon S. DU TMLR我们制定了典范的在线组合优化问题,作为潜在的MDP,并为LMDPS的自然政策梯度提供了融合。 我们通过相对条件数的角度显示了课程学习的有效性。 7。强化方差学习中的尖锐方差界限:在随机和确定性环境中两全其美[link] Runlong Zhou,Zihan Zhang,Simon S. Du ICML 2023海报我们提供了一个系统的研究研究,对基于模型和模型的强化学习的方差依赖性遗憾界限,用于制作模型和模型的增强范围。提出的基于模型的算法既适用于随机和确定性MDP。5。依赖于方差的和无水平的加固学习[链接] Runlong Zhou,Ruosong Wang,Simon S. Du ICML 2023海报我们为潜在MDPS提供了算法框架(可见上下文),从而实现了第一台无线的最小值遗憾。我们通过使用对称技术为LMDP提供了一种新颖的LMDP遗憾下限来补充这项研究。6。了解在线组合优化的政策优化中的课程学习[链接] Runlong Zhou,Zelin HE,Yuandong Tian,Yi Wu,Yi Wu,Simon S. DU TMLR我们制定了典范的在线组合优化问题,作为潜在的MDP,并为LMDPS的自然政策梯度提供了融合。我们通过相对条件数的角度显示了课程学习的有效性。7。Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-Free Regret [Link] Jean Tarbouriech*, Runlong Zhou* , Simon S. Du, Matteo Pirotta, Michal Valko, Alessandro Lazaric NeurIPS 2021 Spotlight, 3 % acceptance rate We propose an algorithm (EB-SSP) for SSP problems, which is the first to achieve minimax optimal regret while无参数。
colophon。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>1 div>
东芝已经提供了主要在日本的沸水反应堆(BWR),并开发了先进的沸水反应堆(ABWR),并提高了安全性和成本效益。利用数十年来建立的核专业知识,Keihin产品运营促成了福基岛 - 达吉核电站积累的受污染的水的处理,以及通过提供反应堆建筑调查机器人和燃油拆除设备而退役。此外,Keihin产品运营通过提供通风过滤器和大东日本地震发生后所需的通风过滤器和其他安全系统以及预防性维护技术(例如激光镀皮),有助于提高核电厂的安全性。
显示 R 1 = 75Ω R a = 50Ω 的情况。 R 2・R 3:耦合电路的电阻 E:SG 输出电压 dBμ V 测试设备的输入信号电平:E-6 [dBμ V]
亲爱的同事和朋友们,在我们进入 2022-2027 年重新制定战略方向 (RSD) 的中点时,我很高兴与大家分享这份报告。在漫长的旅程中,偶尔将镜头拉回原位以了解我们所覆盖的领域是很重要的。回顾我们在战略计划的前半部分所取得的成就,我们可以指出许多重要领域的进展。我仅举几个例子。我们增加了对学生健康和保健的投资。我们正在努力将 SU ADVANCE 制度化,通过支持反映整个校园社区的更多元化的教师队伍并加强我们对学生成功的承诺,它正在改变大学的教授队伍和文化。而且,在我们向平信徒领导过渡期间,我们成立了使命整合办公室,这对于让我们保持耶稣会和天主教的特色至关重要,这是我们战略方向的基本目标。我们还投入了大量精力实施一些关键举措,这些举措将在未来几年开始结出硕果,例如重新规划和修订我们的课程以及重新定位我们大学的发展。这些是我们五年计划的基石,也是我们身份和实现愿望的核心。我们在这个过程中取得了如此多值得庆祝的成就,完全归功于我们整个校园社区的参与和辛勤工作。我要特别感谢推动这些举措的 RSD 工作组主席和成员,以及积极参与重新规划我们课程的教务长研究员。令我特别鼓舞的是,我们的战略方向与教职员工的日常工作相结合的程度。这种协调是由高级领导实现的,他们将组织结构与我们的 RSD 优先事项相结合。在承认和赞赏我们迄今为止取得的所有成就的同时,让我们重新致力于完成这项重要工作。通过融入我们称之为家乡的充满活力的西雅图地区的创新精神——以耶稣会教育 500 多年的独特传统为基础的人文精神——我们正在创造一些真正特别的东西。让我们让未来三年成为我们大学前所未有的增长和变革时期,我们寻求继续赋予我们的学生权力,使他们成为更公正和人道的世界的领导者。敬佩和感激,
今天的菜单提供各种植物蛋白和各种豆类。奶酪和酸奶是优质的乳制品,添加了大量维生素和矿物质,可支持整体健康和发育。蘑菇是蛋白质的来源,同时还含有大量有益健康的抗氧化剂、纤维,并含有维生素 D 和 B 族维生素、B2、B3 和 B5。
^ < ^ , - ~ ~ ^ ^ . ^ : w / " ) y . ^ - ' ' • 我 / . . ' . ' 我 , ' - ~ ,
《2017-2026 年国家药物战略》(简称“战略”)是指导澳大利亚制定和实施酒精和其他药物政策的关键文件。在酒精和其他药物危害显著增加的时代,联邦政府必须发挥领导作用,实施基于证据的政策,以最大限度地减少酒精和其他药物的危害。
在女性中,乳腺癌是全球最常见的癌症(Barzaman et al., 2020)。根据世界卫生组织(WHO)的最新数据,2020 年全球乳腺癌新病例超过肺癌;因此,乳腺癌已成为世界上最大的癌症(Sung et al., 2021)。三阴性乳腺癌(TNBC)被认为是最具侵袭性的,预后不良、治疗选择少、复发率高(Tsang and Tse, 2020)。化疗是 TNBC 的标准疗法,但其有效性受到耐药性发展的限制(Lyons, 2019)。顺铂(CDDP)可单独使用或与其他药物联合用于治疗 TNBC,但 CDDP 耐药性可能导致 TNBC 治疗失败(Nedeljkovi ć and Damjanovi ć, 2019)。因此,确定克服 TNBC 中 CDDP 耐药性的治疗目标至关重要。