摘要。同步二进制计数器是 VLSI 设计中常用的基本组件。同步二进制计数器速度快,可用于许多应用,因为它支持宽位宽。由于扇出量大和进位链长,许多以前的计数器在计数器尺寸较大时计数率较低。提出了一种新的同步二进制计数器快速结构,计数器尺寸从 8 位到 128 位,延迟非常低。为了降低硬件的复杂性,使用了 1 位约翰逊计数器,然后复制它以最大限度地减少大扇出引起的传播延迟。建议的设计是用少量的触发器实现的,使用一个后进位传播计数器和一个基于状态前瞻逻辑的计数器,从而降低了功耗和延迟。
2.1. 应安装第 R408.2 节中的附加效率包选项之一,但不应在根据第 R405 节提出的设计中包含此类措施;或 2.2. 根据第 R405.3 节提出的建筑设计应具有小于或等于标准参考设计年能源成本的 95%。 3. 对于符合能源评级指数替代方案第 R401.2.3 节的建筑,能源评级指数值应比表 R406.5 中规定的能源评级指数目标至少低 5%。 所选的合规选项应在第 R401.3 节要求的证书中注明。
第一个周期的差异在用石墨作为阳极和用硬碳作为阳极的阳极和Na-ion电池之间的不可逆损失
• 根据国际货币基金组织 1 月份的最新预测,全球经济已从 2021 年强劲反弹(全球 GDP 增长 6%)放缓至 2022 年的 3.4% 左右,2023 年可能接近 2.9%。 • 这种相当剧烈的放缓肯定会让许多人感到衰退。此外,虽然我们预计不会出现全球衰退,但个别国家在 2023 年确实可能会经历连续两个季度的经济活动减少。 • 在我们 12 月的《全球展望》中,我们分享了对全球经济的预期,总的来说,我们预计 2023 年与 2022 年相比恶化程度有限,从而为航空运输的前景提供了底线,尽管风险确实存在(可在此处找到这些风险的讨论)。 • 为了进一步说明全球衰退的可能性,我们以美国为例,说明全球可以观察到的趋势,尽管程度不同。这些趋势包括:
病原性冠状病毒是对全球公共卫生的主要威胁,例如严重的急性呼吸综合症冠状病毒(SARS-COV),中东呼吸综合症冠状病毒(MERS-COV)和新出现的SARS-COV-2,是冠心病2019(Covirus 2019)(Covirus nipery 2019)。我们在本文中描述了冠状病毒3C样蛋白酶(3CLPRO)的一系列抑制剂的结构引导优化,这是一种对病毒复制必不可少的酶。优化化合物在酶测定中使用HUH-7和VERO E6细胞系中的几种人冠状病毒和基于细胞的测定中的几种人冠状病毒有效。两种选定的化合物在培养的原代人气道上皮细胞中显示出对SARS-COV-2的抗病毒作用。在MERS-COV感染的小鼠模型中,病毒感染后1天的铅化合物从0增加到100%,并减少了肺病毒滴度和肺部组织病理学。这些结果表明,这一系列化合物有可能进一步发展为针对人冠状病毒的抗病毒药物。
制造业对数字化的关注正蔓延到其他行业领域,包括船舶等大型复杂物体。这种兴趣引入了数字孪生的概念,以支持整个船舶生命周期的设计师和操作员。然而,数字孪生一词在航运业中通常被滥用,很多时候错误地将基于模型的系统的任何虚拟版本称为船舶的数字孪生。物理环境和虚拟环境之间的相互数据交换是真正的数字孪生的基础,但大多缺失,将虚拟模型与复杂的生活虚拟环境混淆。文献中关于船舶数字孪生的评论很少。本系统综述建议确定当前海事行业和其他行业领域的数字孪生应用之间的弱点和相关性。此外,此处应用的方法可能会在未来的研究中重复,以提供公平客观的研究进展概述。该研究强调了文献很少涉及设计和退役阶段,这表明研究应该关注这些主题,特别是关于未来船舶的设计。
© 2022 Infosys Limited,印度班加罗尔。保留所有权利。Infosys 认为本文件中的信息在发布之日是准确的;此类信息如有更改,恕不另行通知。Infosys 承认其他公司对本文件中提及的商标、产品名称和其他知识产权的所有权。除非明确允许,否则未经 Infosys Limited 和/或本文件项下任何指定知识产权持有人的事先许可,不得复制、存储在检索系统中或以任何形式或任何方式(电子、机械、印刷、影印、录制或其他方式)传输本文件或其任何部分。
开箱即用的公平性和偏差评估突出显示了在指定的“敏感”变量中不同组的模型性能和预测的潜在差异。SAS Model Studio 的“公平性和偏差”选项卡显示性能偏差奇偶性、预测偏差奇偶性、性能偏差、预测偏差、偏差指标和偏差奇偶性指标图。SAS Viya 还提供偏差缓解功能,以在训练模型时主动减少偏差。指数梯度减少 (EGR) 算法使用一种缓解偏差的过程内方法,在训练过程中主动调整模型参数,以创建产生公平预测和分类的模型。
摘要。本项目开发了一种新型的快速同步二进制计数方法,用于实用计数器,计数周期最小。同步二进制计数器在许多应用中都是必需的,因为它速度快,还可以支持较大的位宽。基本上,由于扇出量大和进位链长,早期计数器的计数率有限,尤其是在计数器尺寸不小的情况下。它采用单比特约翰逊计数器来降低整个硬件的复杂性,然后复制它以减少由大量扇出引起的传播延迟。在本文中,重新编程其中使用的时钟以用于以不同时钟速率运行的各种应用,并且由于重新编程时钟,延迟值会发生变化,临界值可能会因不同的速率而变化。计数器输出结果是针对各种位获得的,最高可达 64 位,因此该设计提供了各种时钟速率,面积和延迟各不相同。