肌肉干细胞(MUSC)在骨骼肌再生中起着至关重要的作用,居住在整个再生过程中经历尺寸和机械变化的利基市场中。这项研究调查了MUSC在再生的后期遇到的三维(3D)限制和刚度如何调节其功能,包括干,激活,增殖和分化。我们设计了一个不对称的3D水凝胶双层平台,具有可调的物理限制,以模仿再生的MUSC利基市场。我们的结果表明,增加的3D限制能够保持PAX7表达,减少MUSC激活和增殖,抑制分化,并与较小的核大小和H4K16AC水平降低相关,这表明机械限制调节了核结构和表观遗传调节。与在更狭窄的3D条件下的二维(2D)环境中,无限制的二维(2D)环境中的MUSC表现出更大的核和更高的H4K16AC表达,从而导致逐步激活,扩张和肌源性承诺。这项研究强调了3D机械提示在MUSC命运调节中的重要性,3D限制是对肌原性承诺的机械制动器,为控制肌肉再生过程中MUSC行为的机械性景观机制提供了新的见解。
造血干细胞(HSC)是能够无限自我更新的多能细胞,对于整个生命的血液和免疫细胞的产生至关重要。HSC驻留在骨髓中的静止状态,仅在某些刺激后才扩散。杀死这些静止细胞的失败可能导致血液学缺陷,因此,该过程受到多个信号通路的严格调节。最近的研究表明,SER/ THR蛋白磷酸酶可能比以前预期的更多。在这个问题中,LU及其同事表明,蛋白质磷酸PPM1B通过调节WNT/ B-蛋白 - 蛋白信号通路来控制HSC的稳态。使用造血细胞中PPM1B基因的Exon 2的Vav-Cre介导的有条件缺失的转基因PPM1B CKO小鼠模型,它们表明PPM1B对于HSC的增殖是必不可少的。通过限制稀释测定和串行移植实验,进一步证明了ppm1b CKO动物中HSC功能的功能受损。使用PPM1B的小痣抑制剂(HN252 2)以及通过RNA干扰对PPM1B的消耗,在体外概括了来自动物模型的数据。此外,PPM1B CKO小鼠在常见淋巴样祖细胞中也表现出改变,导致B细胞白细胞减少症,而MER MER ELOID谱系未受到影响。此外,谱系-SCA-1 + C-KIT +(LSK)造血干细胞和祖细胞的RNASEQ分析表明,PPM1B CKO动物中包括包括Wnt在内的几种信号通路失调。最后,作者很好地证明了Wnt尤其是,在ppm1b删除PPM1B时,将B -Catenin的几个下游靶标(包括FZD1,JUN,CAMK2B,LRP5,CCND1和GPC4)下调,表明HSC中的缺陷可能是由WNT信号抑制引起的。的确,来自PPM1B CKO动物的LSK细胞显示出B-蛋白质的非活性形式的含量增加,在Ser33/37/Thr41处被磷酸化。
自独立以来,巴基斯坦政府一直将普什图人视为主要威胁。这是因为巴基斯坦有很多普什图人。事实上,尽管普什图人只占巴基斯坦总人口的 15%,但巴基斯坦的普什图人(约 2800 万)实际上比阿富汗的普什图人(约 1500 万)还多。更糟糕的是,巴基斯坦的大多数普什图人都聚集在阿富汗边境附近的杜兰线沿线,这条线是英国殖民者于 1893 年划定的,普什图人认为这条线是非法的。事实上,边界两边的普什图人都可以随意跨越杜兰线,这并不困难,因为这条“线”穿过崎岖的地形,几乎不可能进行警察巡逻。普什图人有句俗语说“你不能用棍子把水分开”,巴基斯坦的许多普什图人仍然认为自己是阿富汗人。
公司治理在确保现代企业的成功和可持续发展方面发挥着关键作用。有效公司治理的核心是独立董事,他们负责提供公正的监督、战略指导和监督高管决策,以维护利益相关者的利益。然而,在快速发展的商业环境中,独立董事在有效履行职责方面面临诸多挑战。人工智能 (AI) 的出现为这些董事提供了一个变革机会,使他们能够克服障碍并提升对公司决策的影响力。
了解癌细胞如何与免疫系统相互作用的进步允许发展免疫治疗策略,从而利用患者的免疫系统来培养癌症。基于树突状细胞的疫苗以重新激活抗肿瘤适应性免疫。免疫检查点抑制剂和嵌合抗原受体T细胞(CAR T)是弹射免疫疗法的治疗成功的主要方法。尽管他们在广泛的人类癌症中取得了成功,但仍有许多挑战在基本的理解和临床进步方面仍然存在,因为只有少数患者受到免疫疗法的好处。此外,细胞免疫疗法面临着由从供体中分离的免疫细胞的可用性和质量施加的重要局限性。细胞命运重编程提供了有趣的替代方案来应对这些挑战。诱导的多能干细胞(IPSC)技术不仅可以研究免疫细胞规范,而且还可以作为分化无数临床上有用的免疫细胞(包括T细胞,NK细胞或单核细胞)的平台。此外,IPSC的利用允许引入遗传修饰和具有增强抗肿瘤特性的T/NK细胞的产生。免疫细胞,例如巨噬细胞和树突状细胞,也可以通过直接的细胞重编程,使用谱系绕过多能阶段的谱系主要调节剂来生成。因此,细胞重编程工具箱现在正在提供解决患者量身定制的免疫细胞类型的潜在癌症免疫疗法的潜力。在这里,并行,用于基因递送的病毒载体的发展为体内重新编程打开了再生医学重编程,这是一种规避当前体外细胞操作的局限性的优雅策略。最近通过体内的汽车T细胞产生了一种类似的范式在癌症免疫疗法中。这些关于内源性重编程的新想法,从再生医学和基因疗法领域进行了交叉施用,为直接调节免疫或肿瘤细胞的原位开辟了令人兴奋的途径,扩大了我们去除癌症免疫疗法障碍的策略。
已清楚的是,胎儿和出生后肝脏 (LPC) 中的多能干细胞能够分化为肝细胞和胆管细胞。然而,与 LPC 分化有关的信号通路仍未完全了解。转录因子 EB (TFEB) 是溶酶体生物合成和自噬的主要调节因子,已知其参与成骨细胞和髓系分化,但它在肝脏谱系承诺中的作用尚未得到研究。我们在这里表明,在发育和再生过程中,TFEB 驱动小鼠 LPC 分化为祖细胞/胆管细胞谱系,同时抑制肝细胞分化。遗传相互作用研究表明,Sox9 作为前体细胞和胆道细胞的标志物,是 TFEB 的直接转录靶点,也是其影响肝细胞命运的主要介质。总之,我们的研究结果确定了一条控制肝细胞谱系承诺的未探索的通路,其失调可能在胆道癌中发挥作用。
无论是通过自然免疫还是接种疫苗后,对传染病的防御都依赖于保护性 T 细胞记忆的产生和维持。幼稚 T 细胞是初级反应期间记忆 T 细胞生成的中心。激活后,它们会经历复杂、高度受调控的分化过程,向不同的功能状态发展。维持到老年的幼稚 T 细胞经历了表观遗传适应,这会影响它们在分化过程中的命运决定。我们回顾了年龄敏感的分子通路和基因调控网络,这些网络使幼稚 T 细胞分化倾向于效应细胞生成,而牺牲了记忆细胞和 Tfh 细胞。因此,老年人的 T 细胞分化与生物活性废物释放到微环境中、更高的应激敏感性以及偏向促炎特征和更短的寿命有关。这些适应不良不仅导致老年人对疫苗的反应不佳,还会加剧炎症状态。
新皮层发育的特征是神经祖细胞(NPC)膨胀,神经发生和胶片发生的顺序相。多肉体介导的表观遗传机制在调节发育过程中的谱系潜力中起着重要作用。PolyComb抑制复合物1(PRC1)的组成在哺乳动物中高度多样,并被介绍为有助于细胞命运的上下文调节。在这里,我们对规范PRC1.2/1.4和非典型PRC1.3/1.5的作用进行了并排比较,所有这些都在NSC的增生和分化中表达。我们发现NSC中PCGF2/4的缺失导致在神经发生和神经胶原型相期间,PCGF2/4的删除大大减少和改变谱系命运,而PCGF3/5则起了较小的作用。从机械上讲,编码干细胞和神经源性因子的基因由PRC1结合,并在PCGF2/4缺失时差异表达。因此,与非典型的PRC1相比,在扩散,神经源和神经胶原阶段的增殖,神经源和神经胶原阶段期间,规范性PRC1在NSC调节中起着更重要的作用,而不是不同的PRC1亚复合物在NSC调节中起着更重要的作用。
抽象的microRNA与Argonaute蛋白相关,形成了MicroRNA诱导的沉默复合物(MIRISC),以在转录后抑制靶基因表达。尽管microRNA是哺乳动物细胞分化中的关键调节剂,但我们对在发育过程中如何调节microRNA机械(例如mirisc)的理解仍然受到限制。我们先前表明,TRIM71抑制一种Argonaute蛋白AGO2的产生对于小鼠胚胎干细胞(MESC)自我更新至关重要(Liu等,2021)。在这里,我们表明,在哺乳动物中的四种Argonaute蛋白中,AGO2是MESC中主要受过的argonaute蛋白。此外,在多能性中,除了TRIM71介导的AGO2的调节(Liu等,2021),Mir182/Mir183还抑制AGO2。对这种微区介导的抑制作用的特异性抑制会导致干性缺陷,并通过let-7 microRNA途径加速分化。这些结果揭示了microRNA机械上的microRNA介导的调节电路,这对于维持多能性至关重要。