本文研究了一种智能系统方法的开发,以解决某些疾病(例如肌萎缩性侧面硬化症(ALS))作为最主要类型的运动神经元疾病(MND)引起的完全锁定综合征(CLI)。在ALS的最后阶段,尽管身体运动受到限制,但患者将具有功能齐全的大脑和认知能力,能够感到疼痛但无法交流。本文旨在通过利用人脑在考虑特定的感觉或想象力作为交流方式时会产生的EEG来解决CLIS问题。目的是开发一种低成本且负担得起的系统,供患者与护理人员和家人进行交流。在本文中,提出了ASP(自动化传感器和信号处理选择)的新型EEG提取方法的方法,以选择最合适的感觉特征(SCF)来检测人类的思想和想象力。人工神经网络(ANN)用于验证结果。发现表明,脑电图信号能够捕获可以用作通信手段的想象信息; ASPS方法允许选择可靠交流的最重要功能。本文解释了定制安排中ASPS方法的实施和验证。因此,未来的工作将呈现出相对较高的志愿者,传感器和信号处理方法的结果。
Spirent 在生产精确、高质量的 GPS 模拟器方面有着悠久而辉煌的历史。GSS6100 秉承了客户对 Spirent 模拟系统和信号发生器所期望的一流功能、性能、可靠性和准确性的传统。GSS6100 单通道 GPS/SBAS 信号发生器专为生产测试应用而设计。标准配置包括用于 ATE 集成的 GPIB 接口、机架安装底盘和机架内年度校准等功能,方便在批量生产测试环境中使用 GSS6100。尽管 GSS6100 专为自动测试应用而设计,但它配备了 PC 软件,方便用作通用实验室信号发生器。GSS6100 将在任何给定时间生成单个模拟 GPS L1、C/A 信号或 SBAS 卫星信号(WAAS 或 EGNOS),选择在模拟开始之前进行。 GSS6100 以 GPS L1 频率 (1.57542 GHz) 生成 GPS 或 SBAS RF 卫星信号。在这两种情况下,载波都使用相关的伪随机测距码和数据消息进行调制。完全支持测距码选择和数据消息定义。信号的多普勒频移和功率电平完全可编程,因此可以在信噪比和信号动态变化的条件下对接收器进行采集测试。载波和代码相位的控制可以模拟电离层
DNA-PC-91X和DNR-PC-91X系列在应用程序需要时为各种传感器和信号调节提供外部功率。91X系列也可用于为需要外部功率的各种DNX系列I/O板提供功率。DNA版本设计用于UEI的立方体机箱,而DNR和DNF系列用于R acktangle和Flatrack底盘形式。DNX-PC-91X系列与DNX-PC-90X系列板完全兼容。
• 机器人自适应计算系统 • 深度神经网络硬件 • 嵌入式多核架构的设计和编程 • 机电网络 • 认证编程语言和编译器设计基础 • 硬件建模与仿真 • 宽带光通信集成电路 • 用于通信和信号处理的集成光子设备 • 光学非经典计算简介:概念和设备 • 神经网络和忆阻硬件加速器 • 神经形态 VLSI 系统 • 物理设计 • VLSI 处理器设计
电子电路和系统中的非理想效应:噪声;设备噪声,外部噪声,CMRR,PSRR,混合a/d。失真;非线性,动态范围,饱和度。对参数变化的稳定性和性能敏感性。一些简单的设计,用于稳定性和性能。设计优化。功率供应分布和解耦。混合模拟/数字系统设计,包括接地和屏蔽。SPICE中的设备建模。 数据表解释。 模拟和数字电路和系统组件的设计:非线性电路;振荡器,PLL,乘数,AGC,施密特触发。 滤波器设计简介;活动过滤器;运算放大器。 传感器和执行器,PTAT;仪器放大器和信号调节。 数字CMOS门的低级设计和优化。 门延迟,功率耗散,噪音余量,扇出。 集成电路设计简介。对应,电源,可靠性,UC看门狗。SPICE中的设备建模。数据表解释。模拟和数字电路和系统组件的设计:非线性电路;振荡器,PLL,乘数,AGC,施密特触发。滤波器设计简介;活动过滤器;运算放大器。传感器和执行器,PTAT;仪器放大器和信号调节。数字CMOS门的低级设计和优化。门延迟,功率耗散,噪音余量,扇出。集成电路设计简介。对应,电源,可靠性,UC看门狗。
有关信号和功率完整性的IEEE交易发表了电子系统及其组件的信号完整性和功率完整性的研究和应用论文,包括集成电路,IC软件包,印刷电路板,电缆,连接器,连接器,以及其他相关的电子和微电电子和微电动组件以及信号完整性和信号完整性/功率集成/电源co-design。在理论上的进步,算法,设计方法和建模,以确保数字,模拟和混合电子系统和子系统的忠诚度和性能。
在1940年代和1950年代在北达科他州法戈的北达科他州农业部工作时,哈罗德·H·弗洛尔(Harold H.他的“基因 - 基因”遗产在现代植物病理学深处,并继续为植物免疫识别和信号传导的分子模型提供信息。在这篇综述中,我们讨论了最新的生物化学见解,以源自核苷酸结合结构域/富含亮氨酸的重复(NLR)受体赋予的植物免疫,这些核苷酸结合结构域(NLR)受体是自然界中主要基因的基因抗性决定因素和cul cultated作物。对病原体活化的NLR低聚物(抗性体)的结构和生化分析揭示了不同的NLR亚型如何以各种方式收敛于钙(Ca 2 +)signaLing,以促进病原体免疫和宿主细胞死亡。尤其是惊人的是鉴定基于核苷酸的signals通过植物Toll-Interleukin 1 Receptor(TIR)域NLR生成的酶。这些小分子是TIR产生的循环和非丝状裂解信号的新兴家族的一部分,该家族在细菌,哺乳动物和植物中引导免疫和细胞死亡反应。对植物NLR激活和信号传导的遗传,分子和生化理解的组合为抗击农作物的疾病提供了令人兴奋的新机会。
HDI 印刷电路板 (PCB) 具有高密度属性,包括激光微孔、顺序层压结构、细线和高性能薄材料。这种增加的密度使单位面积上能够实现更多功能。先进技术 HDI PCB 具有多层铜填充堆叠微孔,从而形成允许更复杂互连的结构。这些复杂结构为当今高技术标准先进产品中的大引脚数、细间距和高速芯片提供了必要的布线和信号完整性解决方案。