尽管在预防和治疗方面取得了重大进步,但心脏代谢疾病仍会承担高发病率和死亡率的负担。这些疾病的长期进展需要鉴定早期和互补的治疗靶标,以阐明和减轻患者护理中的残留风险。肠道微生物群充当内部和外部环境之间的前哨,将与这些因素相关的修改风险传递给主机。咪唑丙酸(IMP)是一种起源于肠道微生物群的组氨酸代谢产物,在发现几年前会损害葡萄糖耐受性和胰岛素信号传导后,引起了人们的注意。在过去五年中的流行病学研究表明,IMP和2型糖尿病(T2D)发作风险增加,肥胖症,慢性肾脏疾病(CKD)中肾脏性状的加剧,动脉粥样硬化pla的进展,心动脉粥样硬化的进展,以及心脏失败的死亡率升高(HF)。这些发现表明,IMP可以作为预防和治疗心脏代谢疾病的关键靶标。机理见解已经发现了IMP和胰岛素抵抗,葡萄糖代谢受损,慢性炎症和肠屏障损伤之间的关联。本综述提供了有关IMP与心脏代谢障碍之间关联的当前证据的全面摘要,强调了其在推进预防疾病和管理的个性化方法方面的潜力,
[1] B. J. Kullberg,M。C。Arendrup,N。Engel。J. Med。 2015,373(15),1445。 [2] F. Bongomin,St.Gago,R。Oladele,D。W。Denning,J. 2017 Fungi,3,4。 [3] B. Halford,化学。 eng。 新闻2021,99,7。 [4] HH Kong,J。 A. City,2020 Science,368(6489),365。 [5] R. Rajendran,L。Sherriff,A。Sherriff,A。M。Johnson,M。F。Hanson,C。Williams,C。A。A. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. Ramage,Clin。 微生物。 感染。 2016,22(1),87。 D. R. Giaciobbe,A。E。E. [7]控制与预防。 Auris候选人。 https://www.cdc.gov/candidal/underx.html。 访问2021。 [8] J. A. Moderns,临床。 微生物。 感染。 2004,10(补充1),1。 [9] M. W. Pound,M。L。Townsend,V。Dimondy,D。Wilson,R。H。Drew,Med。 mycol。 2011,49(6),561。 [10] D. Maubon,C。Garnaud。 2014,40(9),1241。 [11] M. Canutonian Mass,F。GutierezRode,Infect。 dis。 2002,2(9),550。 M. C. Fisher,N。J. J. Hawkins,D。 [13]社论。 nat。 微生物。 2017,2(8),17120。 [14] A. G. Coach,A。R。Conery,R。J。Sims,第三,Nat。J. Med。2015,373(15),1445。 [2] F. Bongomin,St.Gago,R。Oladele,D。W。Denning,J. 2017 Fungi,3,4。 [3] B. Halford,化学。 eng。 新闻2021,99,7。 [4] HH Kong,J。 A. City,2020 Science,368(6489),365。 [5] R. Rajendran,L。Sherriff,A。Sherriff,A。M。Johnson,M。F。Hanson,C。Williams,C。A。A. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. Ramage,Clin。 微生物。 感染。 2016,22(1),87。 D. R. Giaciobbe,A。E。E. [7]控制与预防。 Auris候选人。 https://www.cdc.gov/candidal/underx.html。 访问2021。 [8] J. A. Moderns,临床。 微生物。 感染。 2004,10(补充1),1。 [9] M. W. Pound,M。L。Townsend,V。Dimondy,D。Wilson,R。H。Drew,Med。 mycol。 2011,49(6),561。 [10] D. Maubon,C。Garnaud。 2014,40(9),1241。 [11] M. Canutonian Mass,F。GutierezRode,Infect。 dis。 2002,2(9),550。 M. C. Fisher,N。J. J. Hawkins,D。 [13]社论。 nat。 微生物。 2017,2(8),17120。 [14] A. G. Coach,A。R。Conery,R。J。Sims,第三,Nat。2015,373(15),1445。[2] F. Bongomin,St.Gago,R。Oladele,D。W。Denning,J.2017 Fungi,3,4。[3] B. Halford,化学。eng。新闻2021,99,7。[4] HH Kong,J。A. City,2020 Science,368(6489),365。[5] R. Rajendran,L。Sherriff,A。Sherriff,A。M。Johnson,M。F。Hanson,C。Williams,C。A。A. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. Ramage,Clin。 微生物。 感染。 2016,22(1),87。 D. R. Giaciobbe,A。E。E. [7]控制与预防。 Auris候选人。 https://www.cdc.gov/candidal/underx.html。 访问2021。 [8] J. A. Moderns,临床。 微生物。 感染。 2004,10(补充1),1。 [9] M. W. Pound,M。L。Townsend,V。Dimondy,D。Wilson,R。H。Drew,Med。 mycol。 2011,49(6),561。 [10] D. Maubon,C。Garnaud。 2014,40(9),1241。 [11] M. Canutonian Mass,F。GutierezRode,Infect。 dis。 2002,2(9),550。 M. C. Fisher,N。J. J. Hawkins,D。 [13]社论。 nat。 微生物。 2017,2(8),17120。 [14] A. G. Coach,A。R。Conery,R。J。Sims,第三,Nat。[5] R. Rajendran,L。Sherriff,A。Sherriff,A。M。Johnson,M。F。Hanson,C。Williams,C。A。A. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. Ramage,Clin。微生物。感染。2016,22(1),87。 D. R. Giaciobbe,A。E。E. [7]控制与预防。 Auris候选人。 https://www.cdc.gov/candidal/underx.html。 访问2021。 [8] J. A. Moderns,临床。 微生物。 感染。 2004,10(补充1),1。 [9] M. W. Pound,M。L。Townsend,V。Dimondy,D。Wilson,R。H。Drew,Med。 mycol。 2011,49(6),561。 [10] D. Maubon,C。Garnaud。 2014,40(9),1241。 [11] M. Canutonian Mass,F。GutierezRode,Infect。 dis。 2002,2(9),550。 M. C. Fisher,N。J. J. Hawkins,D。 [13]社论。 nat。 微生物。 2017,2(8),17120。 [14] A. G. Coach,A。R。Conery,R。J。Sims,第三,Nat。2016,22(1),87。D. R. Giaciobbe,A。E。E.[7]控制与预防。Auris候选人。https://www.cdc.gov/candidal/underx.html。访问2021。[8] J.A. Moderns,临床。微生物。感染。2004,10(补充1),1。[9] M. W. Pound,M。L。Townsend,V。Dimondy,D。Wilson,R。H。Drew,Med。mycol。2011,49(6),561。[10] D. Maubon,C。Garnaud。2014,40(9),1241。[11] M. Canutonian Mass,F。GutierezRode,Infect。dis。2002,2(9),550。M. C. Fisher,N。J. J. Hawkins,D。[13]社论。nat。微生物。2017,2(8),17120。 [14] A. G. Coach,A。R。Conery,R。J。Sims,第三,Nat。2017,2(8),17120。[14] A. G. Coach,A。R。Conery,R。J。Sims,第三,Nat。修订版Discov。2019,18(8),609。 [15] E. Ferri,C。What,C。E. McKenna,Biochem。 Pharmacol。 2016,106,1。 F. Mietton,E。Ferri,M。Champel,N。Zala,D。Maubon,Y。 A. Kashemirov,M。Hull,M。Cornet,C。McKenna,J。Govin,C。Petosa,Nat。 公社。 2017,8,15482。 [17] C. Y. Wang,P。Filipaposole,趋势生物化学。 SCI。 2015,40(8),468。 [18]圣卡里亚斯(St. Callias),Y. P. Chhen,Discov。 今天,2011年,16(17 - 18),831。 [19] St. J. Macanoin,V。Gosu,St. Hong,St. Choi,Arch。 parm。 res。 2015,38(9),1686。 M. I. Walton,P。D. Eve,A。Hayes,M。R. Valenti,A。K. Haven Brandon,G。Box,A。Hallsworth,El Smith,K。J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J.2019,18(8),609。[15] E. Ferri,C。What,C。E. McKenna,Biochem。Pharmacol。2016,106,1。F. Mietton,E。Ferri,M。Champel,N。Zala,D。Maubon,Y。A. Kashemirov,M。Hull,M。Cornet,C。McKenna,J。Govin,C。Petosa,Nat。 公社。 2017,8,15482。 [17] C. Y. Wang,P。Filipaposole,趋势生物化学。 SCI。 2015,40(8),468。 [18]圣卡里亚斯(St. Callias),Y. P. Chhen,Discov。 今天,2011年,16(17 - 18),831。 [19] St. J. Macanoin,V。Gosu,St. Hong,St. Choi,Arch。 parm。 res。 2015,38(9),1686。 M. I. Walton,P。D. Eve,A。Hayes,M。R. Valenti,A。K. Haven Brandon,G。Box,A。Hallsworth,El Smith,K。J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J.A. Kashemirov,M。Hull,M。Cornet,C。McKenna,J。Govin,C。Petosa,Nat。公社。2017,8,15482。[17] C. Y. Wang,P。Filipaposole,趋势生物化学。SCI。 2015,40(8),468。 [18]圣卡里亚斯(St. Callias),Y. P. Chhen,Discov。 今天,2011年,16(17 - 18),831。 [19] St. J. Macanoin,V。Gosu,St. Hong,St. Choi,Arch。 parm。 res。 2015,38(9),1686。 M. I. Walton,P。D. Eve,A。Hayes,M。R. Valenti,A。K. Haven Brandon,G。Box,A。Hallsworth,El Smith,K。J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J.SCI。2015,40(8),468。 [18]圣卡里亚斯(St. Callias),Y. P. Chhen,Discov。 今天,2011年,16(17 - 18),831。 [19] St. J. Macanoin,V。Gosu,St. Hong,St. Choi,Arch。 parm。 res。 2015,38(9),1686。 M. I. Walton,P。D. Eve,A。Hayes,M。R. Valenti,A。K. Haven Brandon,G。Box,A。Hallsworth,El Smith,K。J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J.2015,40(8),468。[18]圣卡里亚斯(St. Callias),Y. P. Chhen,Discov。今天,2011年,16(17 - 18),831。[19] St. J. Macanoin,V。Gosu,St. Hong,St. Choi,Arch。parm。res。2015,38(9),1686。M. I. Walton,P。D. Eve,A。Hayes,M。R. Valenti,A。K. Haven Brandon,G。Box,A。Hallsworth,El Smith,K。J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J.
a) Univ Gustave Eiffel, Univ Paris is Creteil, CNRS, UMR 8208, MSME, F-77454 Marne-la-Vallée, France B) Univ Gustave Eiffel, Cosys-Lisis, F-77454 Marne-la-Vallée, France C) Laboratory of Physics of Mince Interfaces and Simals (LPICM) Ecole Polytechnique,Polytechnique de Paris,91128 Palaiseau,法国
咪唑是一种五元的杂环化合物,由于其在各种科学领域中的独特化学特性和多功能性而具有显着的突出性。本文探讨了咪唑及其衍生物的合成方法,物理化学特性和广泛的应用。药物化学,催化和材料科学的最新进展突出了该化合物在学术研究和工业应用中的关键作用。重点放在其药理潜力上,包括抗菌,抗真菌和抗癌活性及其在协调化学和先进材料开发方面的效用。
可见光光聚聚合正面临着一场革命,随着节能光源的发展,即LED。持续开发光电系统的努力在聚合速率和单体转化方面优于现有的系统,从学术角度来看,寻找尚未在光聚聚合中尚未研究的新染料的搜索仍然非常活跃。最近,萘醌 - 咪唑基和萘醌 - 噻唑衍生物已被鉴定为可在人造光源或太阳下设计的I型和II型光通剂的有趣结构。萘喹酮是生物化化合物,可以大大减少光聚合的碳足迹。萘喹酮也是用于设计光初步器的廉价前体,使其能够设计低成本的吸光结构。通过其广泛的吸收光谱,萘喹酮也是设计阳光光学剂的出色候选者。在这篇综述中,报告了这两个脚手架的不同结构,并提供了光学能力的比较。
丙酮酸羧化酶(PC)与多种疾病有关,包括2型糖尿病,癌症和细菌/病毒感染。但是,目前没有能够在体外和体内精确操纵PC活性的分子工具。本论文描述了1,3二取代的咪唑替替替翁的鉴定和表征,是金黄色葡萄球菌PC的新型有效,选择性和可渗透的变构抑制剂。基于动力学,结构和生物物理数据,假设这类抑制剂可以在PC上的非催化“ EXO结合”位点结合。据报道,此EXO结合位点对于催化至关重要,但以前尚未被认为是可药物的位置。本论文还表明,与未激活的PC相比,变构激活的PC对小分子抑制的敏感性明显较小。这一发现为针对人类PC的小分子抑制剂的发展提出了一个重要的新考虑。由于人类PC需要通过乙酰-COA激活催化活性,因此必须针对PC的变构激活形式进行未来的药物发现工作。最后,提供了体外证据,以反驳最近的说法,即两种天然产物Erianin和Anemoside B4是人类PC的抑制剂。本文提交了一个战略框架,以推动针对人类PC的药物发现。它概述了优化的筛选程序,并探讨了鉴定激活人PC抑制剂的可能途径。总体而言,这项工作大大提高了针对人PC的化学探针的开发,并最终有助于扩大用于研究PC在疾病中作用的可用工具包。
1 德国卡尔斯鲁厄理工学院生物与化学系统研究所 - 生物信息处理,埃根施泰因 - 利奥波尔德港。2 德国卡尔斯鲁厄理工学院生物与化学系统研究所 - 功能分子系统,埃根施泰因 - 利奥波尔德港。3 法国南特大学,INSERM,移植与转化免疫学研究中心,UMR 1064。4 德国卡尔斯鲁厄理工学院纳米技术研究所和卡尔斯鲁厄纳米微设施 (KNMFi)。5 加拿大不列颠哥伦比亚省温哥华温哥华前列腺中心。6 英国伦敦癌症研究所。7 英国萨顿皇家马斯登 NHS 基金会。8 哈佛医学院丹娜法伯癌症研究所肿瘤内科系,马萨诸塞州波士顿。9 丹娜法伯癌症研究所功能性癌症表观遗传学中心,马萨诸塞州波士顿
1个地球科学研究所,斯洛伐克科学学院,84005布拉迪斯拉瓦,斯洛伐克2号,伊利诺伊州芝加哥大学芝加哥大学地球物理科学系,伊利诺伊州60637,美国3号,美国内布拉斯加州大学医学中心,内布拉斯加州奥马哈州内布拉斯加州大学68198-438-3375,USYASIGHITIAS BIOSTATISTION,U.S.A. 3. U.S.A.佐治亚州萨凡纳,佐治亚州佐治亚州31411,美国5地球和可持续性学院,亚利桑那北部大学,弗拉格斯塔夫,亚利桑那州弗拉格斯塔夫,亚利桑那州86011 86011,美国6古生物学系,国家自然历史博物馆,史密森尼学会国家博物馆,华盛顿州华盛顿特区,20013年,美国俄亥俄州科学院,俄亥俄州7号,新星,新北,43.55。液压实验室,美国陆军工程师研发中心。Vicksburg,密西西比州39180-6199,美国9号海洋生物学实验室,洛杉矶县县卫生区,加利福尼亚州卡森,加利福尼亚州90745,U.S.A.Vicksburg,密西西比州39180-6199,美国9号海洋生物学实验室,洛杉矶县县卫生区,加利福尼亚州卡森,加利福尼亚州90745,U.S.A.
采用JENWAY公司生产的UV/Vis 6850分光光度计对化合物的结构进行了定性研究。灵敏度高,二元分光光度法操作范围为190~1100nm,装置的光放电率为0.1nm。以汞和白炽灯为激发源。研究在室温下进行,以三氯乙烷为溶剂。将所得溶液和标准具倒入1cm矩形石英管中,并插入紫外分光光度计的适当窗口前,获取样品的光谱。在S3样品的紫外光谱中,在215nm处观察到咪唑环的两个吸收带中的一个,强度较小。低强度与连接咪唑的基团有关。因此,该吸收带属于核电子系统的π-π*跃迁。在 330 nm 处记录了氮未分割电子对的 n-π 跃迁的第二条吸收谱带,强度较高。氯与芳环的连接导致舟铬滑动,这在第二条吸收谱带上基本得到显示。C 6 H 4 Cl 基团在 200 和 235 nm 处,在 260、345 和 360 nm 波长处测定了属于菲基团的吸收谱带。在可见光区(535 nm)观察到了二苯基重氮基团的吸收谱带。影响滑动的因素之一是溶剂是多芳基化合物。
摘要。咪唑复合物具有高生物学活性的一些金属配合物,由新咪唑配体从1,3-恶唑衍生物与羟胺的反应中制备,并利用这种配体在某些金属离子配合物中制备。将使用许多用于所有准备好的化合物的技术,例如元素分析(CHN),(FT-IR),(UV-VIS)光谱和1 H-NMR光谱,用于诊断这些复合物,并将从获得的结果中得出复合物的形式。结果表明,除铜和钯配合物外,所有产生的络合物的八面体几何形状是方形刨剂形状。评估了配体及其金属离子复合物对各种微生物的抗菌活性。关键词:咪唑,恶唑,光谱数据,生物活性
