第 1 章:简介................................................................................................................ 1 背景.............................................................................................................................. 1 问题陈述.............................................................................................................................. 3 P-3C 反潜作战任务描述............................................................................................ 4 P-3C 声学系统描述...................................................................................................... 11 第 2 章:文献综述..................................................................................................... 16 概述...................................................................................................................................... 16 国防部采购............................................................................................................. 16 商业现货...................................................................................................................... 21 潜艇声学快速 COTS 插入开发............................................................................. 24 第 3 章:方法论............................................................................................................. 27 概述............................................................................................................................. 27 采购策略................................................................................................ 27 技术解决方案................................................................................................ 31 工作组................................................
图 1 Extra 300 ................................................................................................................................................43 图 2 后仪表板 ................................................................................................................................................43 图 3 Red Bull 飞机上使用的视频设备 ........................................................................................................44 图 4 GRT 发动机信息系统 .............................................................................................................................44 图 5 GRT EIS 传感器 .............................................................................................................................45 图 6 GRT 姿态、航向和参考系统 .............................................................................................................45 图 7 GRT 磁力计 .............................................................................................................................................46 图 8 GRT 电子飞行信息系统 .............................................................................................................................46 图 9 后处理器用户界面 .............................................................................................................................47 图 10 调用子 VI 的参考节点方法 .............................................................................................................48 图 11 数据查看器 .............................................................................................................................
摘要 — 过去十年,碳化硅 (SiC) 功率金属氧化物半导体场效应晶体管 (MOSFET) 的商业化不断扩大。栅极氧化物可靠性是 SiC 功率 MOSFET 的主要问题,因为它决定了器件的使用寿命。在这项工作中,我们研究了商用 1.2 kV SiC 功率 MOSFET 在不同栅极电压下的栅极漏电流。高氧化物电场引发的碰撞电离和/或阳极空穴注入 (AHI) 导致空穴捕获,从而增强了栅极漏电流并降低了器件的阈值电压。由于 Fowler-Nordheim (FN) 隧穿而产生的电子注入和捕获往往会降低栅极漏电流并增加阈值电压。还对商用 MOSFET 进行了恒压时间相关电介质击穿 (TDDB) 测量。栅极漏电流的结果表明,场加速因子的变化是由于高栅极氧化物场下栅极电流/空穴捕获增强所致。因此,建议在低栅极电压下进行 TDDB 测量,以避免在正常工作栅极电压下高估寿命。
• 双 BLDC 电机 FOC、压缩机和风扇 • 数字交错 PFC、2 级、CCM • 数字软启动浪涌电流限制器,无继电器、无 NTC
需要持续监测绿色能源发电机的输出。监测过程很重要,因为需要了解和评估能源发电机的性能。然而,手动高效地监测发电机很麻烦。此外,大多数能源发电机都位于难以到达或非常偏远的地方。除了成本之外,监测过程的人为干预也会增加不必要的费用。所有突出的局限性都可以通过基于互联网的云系统和应用程序来克服。大多数现有的数据记录仪器在操作中使用存储卡或个人计算机。存储的数据只能在专用计算机上访问。这项工作展示了一个完整的能源发电机接口和一个商业在线数字仪表板。通过数字仪表板,可以监测风力涡轮机的参数,例如发电量和瞬时电压幅度,并可随时随地快速访问记录的数据。
• 商用设备在军事服务中表现出明显较低的平均故障间隔时间 (MTBF)。因此,需要针对每种情况进行风险和尽可能低的合理可行 (ALARP) 评估,以确定系统在哪些方面符合容错性标准,以及在哪些方面需要采取进一步行动才能实现这一目标。
内容包括页面 • 创建并激活 VMC 帐户 7 • 填写 LIDP(本地行业发展计划) 14 • 寻求 LIDP 帮助 18 • 提交 LIDP 24 • 填写简短的 LIDP 表格 25 • 查看和编辑 LIDP 28 • 重新提交 LIDP 30 • 查看主页上的仪表板 31 • VMC 报告 32 • 供应商支持 33 • 术语表 34
地球同步 (GSO) 区域的光学勘测通常需要在天空覆盖范围、勘测深度和成本之间取得平衡。使用商用现货 (COTS) 组件可以合理的成本实现大面积勘测,但这些系统的孔径仅限于 30 厘米左右。孔径超过 1 米的大型望远镜可以探测微弱碎片群以发现分米级的物体,但通常视野较小(约 1 平方度)并且无法大规模商业化使用。因此,尝试使用大型望远镜探测微弱碎片群的勘测通常仅限于对已知碎裂事件的目标观测。否则,视野较小再加上想要覆盖更多天空会导致检测到的物体的位置信息非常稀疏或有限。
自2014年以来,航空业发生了重大变化,影响了新飞机的平均燃油燃烧。随着航空公司和消费者越来越意识到商业航空的环境影响,一些运营商增加了他们对更省油飞机的投资。已经引入了两种流行的重新引擎狭窄飞机类型:空中客车A320NEO和波音737个最大家庭,以取代较老,效率低下的飞机。巴西航空工业公司E-JET E2家族也在2018年投入使用,这将新的,省油的发动机技术扩展到了区域喷气机。同时,引入空中客车A350和A330NEO家庭,以及更多波音的787个梦幻客机的交付,提高了宽体燃料效率。