摘要 - 我提出了一种新颖的增强学习方法,用于在模拟环境中训练四足机器人。在动态环境中控制四足机器人的想法非常具有挑战性,我的方法提出了最佳的政策和培训方案,资源有限,并且表现出色。该报告使用RaisimgyMtorch开源库和专有软件Raisim进行模拟Anymal机器人。我的方法以训练时的机器人步行方案的评估为中心,以制定马尔可夫决策过程。使用在Actor-Critic模式下使用的近端策略优化算法来解决结果的MDP,并使用一台台式机收集了数千个状态转换。这项工作还提出了一个控制器方案,该计划在模拟环境中显示了数千个时间步骤。这项工作还为早期研究人员提供了他们喜欢的算法和配置的基础。
多倍体在禾本科植物中很常见,对传统育种提出了挑战。基因组编辑技术绕过了杂交和自交,能够在一代中对多个基因拷贝进行有针对性的修改,同时保持许多多倍体基因组的杂合背景。巴哈草(Paspalum notatum Flügge ́;2 n =4 x =40)是一种无融合生殖的四倍体 C4 物种,在美国东南部广泛种植,作为肉牛生产和公用事业草坪的饲料。叶绿素生物合成基因镁螯合酶(MgCh)被选为在四倍体巴哈草中建立基因组编辑的快速读出目标。含有 sgRNA、Cas9 和 npt II 的载体通过基因枪法递送到愈伤组织培养物中。通过基于 PCR 的检测和 DNA 测序对编辑植物进行了表征,并观察到高达 99% 的 Illumina 读数的诱变频率。野生型 (WT) 巴哈草的测序显示,MgCh 的序列变异水平很高,这可能是因为存在至少两个拷贝,可能包含八种不同的等位基因,包括假基因。MgCh 突变体表现出明显的叶绿素消耗,叶片绿度降低了 82%。两种品系显示出随时间推移的编辑进展,这与体细胞编辑有关。获得了嵌合 MgCh 编辑事件的无融合生殖后代,并允许在一系列叶绿素消耗表型中识别出统一编辑的后代植物。高度编辑的突变体的 Sanger 测序显示 WT 等位基因的频率升高,可能是由于频繁的同源定向修复 (HDR)。据我们所知,这些实验是首次报道将基因组编辑应用于多年生暖季草皮或牧草。该技术将加速巴哈草品种的开发。
菊花含量,东亚本地的一种物种众所周知,是耕种的菊花的祖细胞之一,该物种以其观念和药用价值而生长。先前关于菊花的基因组研究在分析该植物谱系时,很大程度上忽略了质体基因组(质体)和线粒体基因组(有丝分裂基因组)的动力学。在这项研究中,我们测序并组装了二倍体和四倍体C的质体和有丝分裂组。芳香。我们使用了来自27种具有质体和有丝分裂组完整序列的数据,以探索细胞器基因组之间序列演化的差异。二倍体和四倍体C中的细胞器基因组的大小和结构通常相似,但四倍体C. indimum和C. indimum var。芳香族在有丝分裂组中包含独特的序列,这些序列还包含先前未描述的开放式阅读框(ORF)。跨菊花有丝分裂组的结构变化很大,但是从质体转移到有丝分裂基因组的序列得到了保存。最后,有丝分裂基因组和质子基因树之间观察到的差异可能是这两个基因组中基因之间序列演化速率差异的结果。总共提出的发现大大扩展了研究菊花细胞器基因组进化的资源,并可能在将来可以应用于保护,育种和基因库。
b'magic-角角扭曲的双层石墨烯可容纳各种有趣的物质状态,包括非常规的超导状态。但是,这种材料可以形成全新的物质状态吗?在本次演讲中,我将讨论两种不同类型的电子冷凝物的可能出现,它们超出了BCS耦合范式。这些是由典型的四元素形成的冷凝物,在电子对之间没有相干性,而是对成对对之间的相干性。通过使用大型蒙特卡洛模拟在魔术角扭曲的低能有效模型[1]中,我们表明,取决于超导地面状态,费米式四倍体置置供应量可以作为遗传相吻合。由四个破坏时间逆转对称性的电子形成,通常出现在超导过渡上方[2]。相反,如果基态是列明超导体,则我们的数值模拟表明,该系统在正常金属相中熔化之前表现出电荷4E相[3]。这表明扭曲的双层石墨烯是稳定和观察这些新型量子状态的理想平台。
背景:出院后的手术恢复通常给患者和看护人带来挑战。术后并发症和在家管理不良的疼痛可能会导致对急诊科(ED)的意外访问和去医院的再入院。数字家庭监控(DHM)可以改善术后护理。目的:与标准护理相比,我们进行了一项随机对照试验(RCT)的可行性研究,以评估胸外科手术后的DHM有效性。方法:我们在单个三级护理中心进行了2臂平行组飞行员RCT。接受胸腔手术程序的成年患者被随机分为2组:DHM组和护理标准(对照组)。我们遵守了意向性治疗分析原则。主要结果是预先确定的RCT可行性标准。如果超过75%的试验募集,协议依从性和数据收集,则该试验将是可行的。次要结果包括30天的ED访问率,30天的再入院率,术后并发症,住院时间长度,30天阿片类药物消费量,30天的恢复质量,患者培训质量满意度,照料者满意度,医疗保健提供者满意度以及每例案例成本。结果:满足所有RCT可行性标准。试验招聘率为87.9%(95%CI 79.4%-93.8%)。协议依从性和结果数据收集率分别为96.3%(95%CI 89.4%-99.2%)和98.7%(95%CI 92.9%-99.9%)。总共有80名患者被随机分配,DHM组为40例(50%),对照组40例(50%)。基线患者和临床特征在两组之间是可比的。The DHM group had fewer unplanned ED visits (2.7% vs 20.5%; P =.02), fewer unplanned admission rates (0% vs 7.6%; P =.24), lower rates of postoperative complications (20% vs 47.5%, P =.01) shorter hospital stays (4.0 vs 6.9 days; P =.05), but more opioid consumption (111.6,SD 110.9)vs 74.3,SD 71.9 mg吗啡等效物;与对照组相比,p = .08)。DHM also resulted in shorter ED visit times (130, SD 0 vs 1048, SD 1093 minutes; P =.48) and lower cost per case (CAD $12,145 [US $ 8436.34], SD CAD $8779 [US $ 6098.20] vs CAD $17,247 [US $11,980.37], SD
摘要 - 表达机器人行为对于在社交环境中广泛接受机器人至关重要。学习的腿部运动控制器的最新进展已实现了更具动态和多功能的机器人行为。,确定在各种情况下与不同用户互动的最佳行为仍然是一个挑战。当前方法要么依赖于自然语言输入,这是有效但低分辨率的,要么从人类的偏好中学习,尽管高分辨率却是效率低下的样本。本文介绍了一种新的方法,该方法利用了预先训练的LLMS产生的先验,并在偏好学习的精确度上。我们的方法称为语言引导的偏好学习(LGPL),使用LLMS生成初始行为样本,然后通过基于偏好的反馈来完善这些样本,以学习与人类期望紧密相符的行为。我们的核心见解是,LLM可以指导偏好学习的抽样过程,从而实现样本效率的实质性提高。我们证明,LGPL可以快速学习精确和表现力的行为,只有四个查询,既优于纯语言参数模型和传统的偏好学习方法。带有视频的网站:此HTTP URL。
摘要:这项工作探讨了使用可区分的模拟进行四足运动的潜力。可区分的模拟通过使用机器人动力学计算低变化的一阶梯度来承诺快速转化和稳定训练。但是,它对腿部机器人的使用仍然仅限于模拟。主要挑战在于由于不连续动态而引起的机器人任务的复杂优化格局。这项工作提出了一个新的可区分类似框架来克服这些挑战。我们的方法结合了用于正向动力学的高保真度,非差异的模拟器,简化的表面模型用于梯度后传播。这种方法通过将替代模型的机器人状态与精确的,不可差的模拟器对齐来保持模拟精度。我们的框架使学习可以在几分钟内在仿真中学习四倍,而无需并行化。随着GPU并行化的增强,我们的方法允许四倍的机器人在几分钟内在挑战地形上掌握各种运动技能。我们证明,可差异的模拟通过实现明显提高样品效率的同时,在处理大规模环境中的有效性时,可以优于强化学习算法(PPO)。我们的方法代表了可区分模拟到现实世界四倍的机车运动的第一个成功应用之一,它为传统RL方法提供了令人信服的替代方案。视频:https://youtu.be/wenq_w715xm
摘要 - 我们提出了一个新颖的层次结构增强学习框架,用于在具有挑战性的地形上进行四足运动。我们的方法结合了两层层次结构,高级计划者(HLP)选择低级政策(LLP)的最佳目标。LLP是使用派演员批评的RL算法训练的,并将脚步放置为目标。HLP不需要任何额外的培训或环境样本,因为它是通过在线优化过程对LLP的价值函数进行的。我们通过将其与端到端的强化学习(RL)方法进行比较来证明该框架的好处,从而突出了其在各种不同地形阵列中碰撞较少的碰撞较少的能力的提高。索引术语 - 动物学,强化学习,优化
摘要 - 由于独立的平台动作以及由此产生的多种惯性力量,机器人在机器人的六度移动平台(例如地铁,公共汽车,飞机和游艇)等六度移动平台上面临平衡挑战。为了减轻这些挑战,我们提出了基于学习的运动平台(LAS-MP)的主动稳定,具有自动平衡政策和系统状态估计器。策略会根据平台的运动自适应地调整机器人的姿势。估计器基于原则传感器数据推断机器人和平台状态。对于各种平台运动的系统培训方案,我们介绍了平台轨迹生成和调度方法。我们的评估表明,与三个基线相比,多个指标的卓越平衡性能。此外,我们对LAS-MP进行了详细分析,包括消融研究和评估估计器,以验证每个组件的有效性。