出入境点。直到最近,威胁主要还是物理威胁,因此国家边境由陆路、海路或空中的物理过境点守卫。然而,网络空间的增长及其带来的犯罪机会动摇了安全模式,从而产生了虚拟的外部威胁。本论文旨在介绍网络安全应如何以及为何与国家内部现有的边境管理结构相结合,以便为其外部边界(包括物理和虚拟)创建整体安全方法。这需要第四种边界类型及其保护措施的出现,我将其称为云。边境管理和网络安全的交集已经存在于许多领域,但目前尚未得到充分审查,在存在差异的地方,例如私营部门的利益和国家监管,网络安全可以从古老的边境管理部门的机构记忆中汲取优势。随着整个欧洲的不稳定性不断上升,混合威胁与国家安全密不可分,因此必须采用混合边境方法来应对,也就是说,使用边境管理策略来保护云边界。
本文研究了用于定量末端链研究中使用的四种替代数据收集方法的方法之间的收敛有效性。基准方法是常规的APT方法(即纸笔方法),其中要求受访者指示产品属性与消费者的好处之间的现有联系(即ab),以及在征服和消费者价值(BV)之间。替代数据收集方法是口头访谈(VI),两种类型的综合访谈(CP和CR),每种访谈仅在AB和BV链接与受访者之间差的顺序相差。结果表明,未建立所有四种数据收集方法之间的方法之间的收敛有效性。但是,当将两种替代数据收集方法(特别是:CP和VI)与常规APT方法进行比较时,在某种程度上支持了方法之间的收敛有效性。唯一产生结果的数据收集方法(即consumer m-e-cs)与常规APT方法明显不同的是计算机访谈,其中AB和BV链接以(部分)随机顺序与受访者(即CR方法)。2005 Elsevier Ltd.保留所有权利。2005 Elsevier Ltd.保留所有权利。
稀释效应假说(DEH)认为,更大的生物多样性降低了散发性的风险并降低了病原体传播的速度,因为更多样化的社区在任何给定的病原体中都有较少的胜任宿主,从而减少了宿主暴露于病原体。deh预计将在载体传播的病原体和物种富含物种的群落与宿主密度升高相关时最强烈地运作。总体而言,如果较大的物种多样性导致感染载体和易感宿主之间以及受感染的宿主和易感载体之间的接触率较低,则会发生稀释。基于现场的测试同时分析了与宿主和矢量多样性相关的几种多宿主病原体的流行才能验证DEH。我们测试了四种载体传播病原体的房屋麻雀(Passer fordayus)的患病率 - 三个禽流膜孢子虫(包括鸟类疟疾寄生虫疟原虫和类似疟疾的寄生虫的寄生虫造血和白细胞)和西尼氏病毒(WNV)(WNV)(WNV)的关系。鸟类在西班牙西南部的45个地区进行采样,其中存在有关媒介(蚊子)和脊椎动物群落的广泛数据。脊椎动物人口普查是为了量化禽和哺乳动物密度,物种丰富度和均匀度。与DEH,WNV血清阳性和血孢子虫患病率的预测相反,与脊椎动物物种的丰富度甚至均匀度都没有负相关。的确,发现了相反的模式,鸟类丰富度和WNV血清阳性之间存在正相关关系,并且检测到白细胞流行率。当将矢量(mos- quito)丰富性和均匀度纳入模型时,WNV患病率与脊椎动物社区变量之间的所有先前关联保持不变。在任何测试的模型中,尚未发现疟原虫患病率和垂直社区变量的显着关联。尽管研究的系统具有多种特征,这些特征应有利于稀释效应(即,载体传播的病原体,
Benoit Nabholz。不完整的谱系分类解释了四种西欧蚱hoppers的辐射中DNA条形码的低性能(Orthoptera:Acrididae:Chorthippus)。林尼社会生物学杂志,2023年,10.1093/biolinnean/blad106。hal-04192161
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2022 年 3 月 21 日发布。;https://doi.org/10.1101/2022.03.18.484953 doi:bioRxiv preprint
摘要 - 无人飞机(UAVS)经常面临最终随着电力消耗而发生的挑战,这是因为无人机的电池容量较小和连续的操作系统。要克服这种不确定性,需要预测功耗的准确性,以便无人机可以飞行更长的时间。这项研究使用四种不同的深度学习模型,例如长LSTM,GRU,LSTM-SA和GRU-SA探讨了无人机能源消耗的预测。结果表明,结合了自我发项机制的模型,尤其是GRU-SA,显着胜过其他模型,实现了最低的MAE(0.0343),RMSE(0.0567)和MSE(0.0032)(0.0032)。自我注意力通过在动态过渡过程中专注于重要的输入特征来提高预测准确性。这项工作凸显了提高无人机消耗的坚实基础。索引术语 - 自我注意,深度学习,能量构成,预测,gru-sa
保留所有权利。未经许可不得重复使用。(未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。此预印本的版权持有者此版本于 2025 年 1 月 25 日发布。;https://doi.org/10.1101/2025.01.23.25321032 doi:medRxiv preprint
摘要:环境 DNA (eDNA) 有可能在稀有和濒危水生物种调查中发挥重要作用。eDNA 采样是一种非侵入性技术,对于难以调查的小型隐蔽物种,它可能是一种比传统技术更可行、更有效且更便宜的替代方法。我们使用 eDNA 调查了美国新墨西哥州查韦斯县苦湖国家野生动物保护区的 5 种濒危春季特有物种。2018 年 7 月对泉水中的 40 个水样进行了评估,以确定其中是否存在 Gambusia nobilis、Gammarus desperatus、Juturnia kosteri、Pyrgulopsis roswellensis 和 Assiminea pecos 的残留 DNA。我们在 50% 的地点检测到了 G. nobilis 的 eDNA,在 42.5% 的地点检测到了 J. kosteri 的 eDNA,在 27.5% 的地点检测到了 P. roswellensis 的 eDNA,在 20% 的地点检测到了 G. desperatus 的 eDNA,但在任何地点均未检测到 A. pecos eDNA。我们还研究了影响这些濒危物种占用模式的栖息地条件,并制定了栖息地参数阈值,以指导保护决策。盐度和溶解氧影响 G. desperatus 、 P. roswellensis 和 J. kosteri 的样本占用率,但只有溶解氧影响 G. nobilis 的样本占用率。结果强调了使用 eDNA 监测 5 种春季特有物种中的 4 种的有效性,并深入了解了每种物种的栖息地偏好,这将有助于推动保护活动。关键词:濒危物种·eDNA·占用·湿地·软体动物·鱼类
我们报告了从葡萄牙里斯本海洋馆 19 立方米热带展览水族馆中保存的两个 Litophy ton sp. 标本中分离出的四种 Endozoicomonas 菌株的基因组。如前所述 (2) 回收宿主衍生的微生物细胞悬浮液。将一克珊瑚组织在 9 mL 无菌 Ca 2+ - 和 Mg 2+ - 人工海水中均质化 (2)。将匀浆连续稀释,分别接种在 1:2 稀释的海洋琼脂和 1:10 稀释的 R2A 培养基上,并在 21°C 下孵育 4 周。使用 Wizard 基因组 DNA 纯化试剂盒 (Promega, USA) 从 1:2 海洋肉汤中新鲜生长的培养物中提取单个菌落的基因组 DNA。使用通用引物 (F27 和 R1492) 从基因组 DNA 中扩增 16S rRNA 基因,通过 Sanger 测序来确认纯度。使用 SILVA 比对、分类和树服务 (v1.2.12) 和数据库 (v138.1) 进行分类分配。使用 PacBio 测序技术 (5),相同的基因组 DNA 样本在 DOE 联合基因组研究所 (JGI) 进行基因组测序。对于每个样本,将基因组 DNA 剪切至 6-10 kb,使用 SMRTbell Express Template Prep Kit 3.0 进行处理,并用 SMRTbell 清理珠 (PacBio) 进行纯化。使用条形码扩增寡核苷酸 (IDT) 和 SMRTbell gDNA 样本扩增试剂盒 (PacBio) 富集纯化产物。构建了 10 kb PacBio SMRTbell 文库,并使用 HiFi 化学在 PacBio Revio 系统上进行测序。使用 BBTools v.38.86 ( http://bbtools.jgi.doe.gov ) 根据 JGI 标准操作规范 (SOP) 协议 1061 对原始读段进行质量过滤。使用 Flye v2.8.3 (6) 组装过滤后的 >5 kb 读段。生物体和项目元数据存放在 Genomes OnLine 数据库中 (7)。使用 NCBI 原核基因组注释流程 (PGAP v.6.7) (8) 和 DOE-JGI 微生物基因组注释流程 (MGAP v.4) (9) 对重叠群进行注释,并与集成微生物基因组和微生物组系统 v7 (IMG/M) 相结合进行比较分析 (10)。使用 CheckM 评估基因组完整性和污染