具有 CN 4 四面体三维骨架的碳氮化物是材料科学的伟大梦想之一,预计其硬度将高于或与金刚石相当。经过 30 多年的努力,仍然没有提供其存在的确凿证据。本文报道了在激光加热的金刚石压砧中高压高温合成三种碳氮化合物 tI 14-C 3 N 4 、hP 126-C 3 N 4 和 tI 24-CN 2 。利用同步加速器单晶 X 射线衍射解析和细化它们的结构。物理性质研究表明,这些强共价键合的材料具有超不可压缩和超硬的特性,还具有高能量密度、压电和光致发光特性。新型碳氮化物在高压材料中是独一无二的,因为它们是在 100 GPa 以上产生的,并且可以在环境条件下在空气中回收。
●对于由带有E边缘的常规多边形构造的2D中的所有不允许的晶体对称性,对于E = 8,P或2P,可以进行准晶体,其中P是大于3的质子数;对于e奇数,对于e奇数,k = [e/2],对于e,[n]是最大的整数小于n。 ●可以使用类似的论点来证明二十面体,四面体和八面体式晶体可以使用k = 2。●对于计算的情况,预测的衍射模式由Bragg峰组成,这些峰在自相似模式下密集地填充了相互的空间。●周期性5的操作在二十面体准晶体中产生黄金比率。(不弥补!)●猜想:具有准晶体对称性的原子排列应比密集的包装固体的密度不高,并在整个结构中具有狭窄的空体积分布式的式层状。
简单摘要:基于核酸的药物的使用是抗肿瘤治疗的有希望的方向。在某些医学领域,已经开发并将某些修饰的寡核苷酸类似物(例如反义寡核苷酸)进行开发并用作创新的治疗剂。已经设计了许多具有预定形状和功能特征的DNA纳米材料的方法。因此,已将有效抗肿瘤药物的分子(包括阿霉素,治疗性寡核苷酸和复杂纳米颗粒)加载到或与基于DNA的纳米材料相结合。发现基于DNA的纳米材料可以增加细胞药物摄取的效率。在这篇综述中,我们想提请人们注意一些基于DNA的纳米材料,例如四面体,折纸,DNA纳米管和适体,这些纳米材料已用作抗癌药物递送的载体,药物或靶分子。
沸石是一种具有三维晶体结构的微孔铝硅酸盐矿物,其具有规则排列的大型开放空腔,形成笼状和通道。空腔由沸石的结构组成1,2)组成。它们的骨架由(SiO 4 ) 4-和(AlO 4 ) 5-四面体组成,两者都可以构建由单环4-、6-和8-,或双环4-4、6-6和8-8或支环4-1、5-1等组成的二级结构单元3)。骨架结构类型将决定表面积、孔径和孔隙率4)。与其他矿物相比,沸石具有多种优势,尤其是其作为离子交换剂、催化剂和吸附剂的功能。印度尼西亚四面环海,火山环纵横交错,具有丰富的天然沸石矿物资源 5, 6) 。沸石可用作催化剂、离子交换和吸附剂 6) 。一般而言,沸石矿物具有以下化学式 7) :
简介。— 令 ðð n; K; d ÞÞ 表示一个 n 量子比特量子纠错码,其代码空间维度为 K,距离为 d 。Eastin-Knill 定理 [1] 表明,当代码非平凡(d ≥ 2)时,SU ð K Þ 中可以横向实现的逻辑运算始终是有限子群 G ⊂ SU ð K Þ 。如果逻辑门 g 可以实现为 U 1 ⊗ ⊗ U n ,其中每个 U i ∈ U ð 2 Þ ,则称其为横向门。横向门被认为具有天然容错性,因为它们不会在物理量子比特之间传播错误。我们的重点是将单个逻辑量子比特编码为 n 个物理量子比特(K ¼ 2)。在这种情况下,Eastin-Knill 定理表明横向门必须是 SU(2) 的有限子群。SU(2) 的有限子群是循环群、双循环群和三个例外群。我们主要对三个例外群感兴趣:二元四面体群 2T、二元八面体群 2O 和二元二十面体群 2I。这三个群分别对应于四面体、八面体和二十面体的对称群通过双覆盖 SU ð 2 Þ → SO ð 3 Þ 的提升(见图1 )。有关 SU(2) 的有限子群的更多信息,请参阅补充材料 [2] 。群 2O 更广为人知的名字是单量子比特 Clifford 群 C 。许多代码横向实现 2O,例如 ½½ 7 ; 1 ; 3 Steane 代码和 ½½ 2 2 r − 1 − 1 ; 1 ; 2 r − 1 量子穿孔 Reed-Muller 代码。更一般地,所有双偶自对偶 CSS 代码都横向实现 2O。群 2T 是 Clifford 群的一个子群,还有许多代码具有横向门群 2T,最著名的例子是 ½½ 5 ; 1 ; 3 代码。与此形成鲜明对比的是,没有代码被明确证明可以横向实现 2I。考虑到 2I 在 [32] 中提出的“最佳绝对超金门集”中的作用,这一遗漏尤其明显,该集是最佳单量子比特通用门集。
沸石是微孔晶体,这些晶体是由四面体SiO 4和Alo 4物种通过共享O原子相互联系的,它们在吸附,分离,离子交换和异构固体阳性催化中表现出了显着的应用前景[1]。通常,通过异态替代物,可以将Si和Al原子框架的一部分取代,例如Ti,Sn,Ge,Zr,Zr,B,P,V和Ga,导致杂原子沸石或金属硅酸盐[2-4]。Among these heteroatomic zeolites, titanosilicate is the most representative one, and it can catalyze diverse selective oxidation reactions, such as alkene epoxidation, aldehyde or ketone ammoxidation, benzene or phenol hydroxylation, 1,4-dioxane oxidation, selective oxidation of pyridine derivatives, and oxidation desulfurization [5-9]以及酸催化的反应,例如环氧化物的铃声反应[10-12],乙二胺冷凝[13]和贝克曼的氧电[14](如图1.1所示)。此外,钛硅酸盐的发现扩大了沸石的应用范围,因为异质催化剂从酸催化到氧化还原场。几项评论和专着提出了对合成和催化应用中钛硅酸盐的机会和挑战[3-9,15-18]。如图1.2所示,从1983年到2023年,与钛质有关的年度出版物数量迅速增加,在过去的十年中,这一数字一直保持在200–350。值得注意的是,钛硅酸盐可以根据其质地性能和孔径分为微孔,介孔和静脉型类型。其中,具有孤立的四面体Ti物种的微孔钛硅酸盐具有尺寸<2 nm的毛孔,其中包括中小孔和中孔的钛硅酸盐沸石,带有8或10元的环(MR),12 MR大孔沸石,大孔沸石,超大型孔的杂物和超大型孔的Zeolites和≥14mms。在具有三个字母代码的255个订购的沸石框架结构和国际沸石协会结构委员会(IZA)认可的部分无序的沸石结构中,28个结构
为了给舰载机的适航性提供参考,本文对尾喷流场及其对飞行甲板的影响进行了研究。首先建立了航空母舰和舰载机的几何模型,并在此基础上划分了非结构化四面体网格进行数值分析。然后,本文对4架舰载机在舰首准备起飞时尾喷流场进行了数值模拟,以评估其对喷气导流板(JBD)和飞行甲板的影响。分析过程中采用了标准k-ε方程、三维N-S方程和计算流体力学(CFD)理论。在求解方程时,还考虑了风和射流的热耦合。利用CFD软件FLUENT模拟给出了速度和温度分布。结果表明:(1)该解析方法可以用于模拟具有复杂几何模型的气动问题,且结果可靠性高;(2)通过分析可以优化安全工作区、JBD安装方案和起飞位置布置。
DNA纳米结构是一类自组装纳米材料,在生物医学和纳米技术中具有广泛的潜在应用。使用人直觉或简单算法的简单DNA Polyhedra的发展可以追溯到1980年代。今天,该领域以DNA折纸构建体为主导,以至于丢失了用于设计非原虫纳米结构的原始算法。在这项工作中,我们描述了Arktos:一种用于设计简单DNA Polyhedra而无需使用DNA折纸的算法。arktos设计序列被预测使用模拟退火优化折叠成所需的结构。作为概念证明,我们使用Arktos设计了一个简单的DNA四面体。合成了生成的寡核苷酸序列,并通过聚丙烯酰胺凝胶电泳对实验验证,表明它们折叠成所需的结构。这些结果表明,根据研究界的需求,Arktos可用于设计自定义DNA Polyhedra。
紧密间隔的氢键(四面体排列中的4个)可以提供发声动物的轴承。可以使用多个间隔的水文簇合理地(在米以内)合理地(在米之内)跟踪动物的3维运动,以提供范围。这并不简单,因为来自动物的广播是定向的,同时在多个言语上进行检测,并具有足够的分离。也存在重要的局限性,尤其是潮汐流或涡轮机的背景噪声都可以干扰信号,必须通过精确的时钟同步仔细地定位了跟踪的水音簇,并且必须实时进行适当的数据处理,最好进行。范围在涡轮机周围的嘈杂环境中也受到限制,随着范围的增加,精度迅速下降。所有这些因素都是具有挑战性的,对于精细规模跟踪该技术仍然需要经验丰富的专家支持,无论是设计监视程序还是解释数据。
本研究探索了新开发的结构集成表面铰接 (SISA) 系统在各种结构工程应用(如建筑外墙和太阳能电池板)中的效率。SISA 是一个模块化系统,由动态可调的三维表面面板组成,由内部线框空间结构支撑。铰接技术因面板的具体功能而异,其配置旨在通过外表面面板和内部框架之间的复合作用来优化结构性能。结合多面体和蜂窝状配置(包括四面体和凸多边形形式),对塑料、智能玻璃和金属板等材料进行了评估。该研究强调通过将现代框架系统与表面铰接相结合来提高大规模结构效率。它还探讨了建筑设计的演变,并介绍了使用基于 SISA 的结构的案例研究,以强调结构完整性的潜在改进。通过解决材料特性和设计技术,该研究旨在展示 SISA 系统如何为建筑工程带来重大进步。