癫痫的诊断和治疗在很大程度上取决于脑电信号样本中癫痫发作的鉴定。本文主要集中于鉴定癫痫发作和基于EEG信号的分类,该特征的三个重要统计特征优先考虑EEG信号的非平稳特征,即复杂性,能量波动和自回旋模型,以表示独特的癫痫发作模式。测量复杂性的样品熵(SE)的三个特征,一种平均Teager Energy(MTE)之一,它测量了与癫痫发作相关的暂时性能量波动,而四种自回归(AR)建模技术提出了一种新颖的癫痫发作方法。基于线性相关性,AR模型用于表示独特的癫痫发作模式。为了训练AR模型,将信号分为图像前(塞氏症前)和间歇性(非西部)段。在检测阶段,通过滑动窗口计算了EEG信号的MTE和SE特征样本,并利用AR模型预测以下样品。本文表明,MTE,SE和AR模型共同产生了有希望的癫痫发作结果。这种方法在识别癫痫发作和非塞亚零件方面的敏感性和特异性优于现有方法。所提出的方法有可能用于实时癫痫发作检测应用,从而促进癫痫患者的及时诊断和治疗。
2。方法2.1。研究设计和设置使用Consores软件(一种用于监视法国公共卫生机构提供的AMC和AMR数据的工具),在2014年1月至2019年12月之间进行了法国教学医院的回顾性生态研究。Nimes University医院有1773张病床,包括46张病床,有24张床,用于血液学,235张手术,长期为190。在研究期间,每年接受41 300至50 100个住院患者,住院时间为55 200天/月,每年增加到2019年的57 500天/月。2.2。细菌样品分析了研究期间收集的大肠杆菌阳性的所有微生物样品。从门诊病人获得的样本,或在急诊室或在入院48小时内收集的样本,除非患者
本研究建立在技术整合在高等教育中日益重要的地位,特别是在教育环境中人工智能 (AI) 的使用。背景研究强调,教育项目中对人工智能培训的探索有限,尤其是在拉丁美洲。人工智能在教育实践中变得越来越重要,影响着包括实验科学在内的各个学科能力的发展。本研究旨在描述钦博拉索国立大学实验科学教育项目学生在人工智能、人工智能使用和数字资源方面的专业能力之间的相关性。在方法上,采用了定量方法,涉及对 459 名学生进行结构化调查。使用多元回归模型进行数据分析,以建立对人工智能使用的预测见解。开发了一个多元线性回归模型来预测这些学生的人工智能使用情况。分析显示,人工智能能力、人工智能使用和数字资源之间存在显著相关性。回归模型强调,人工智能能力和数字资源都是人工智能使用的重要预测因素。这些发现强调了发展人工智能能力和提供数字资源访问权限以加强人工智能在教育实践中有效使用的重要性。讨论了局限性和未来的研究方向。
1,2,教育科学和培训工程学多学科实验室(LMSEIF)。运动科学评估和体育锻炼教学。摩洛哥哈桑二世卡萨布兰卡大学的普通高中(ENS-C)。在线发布:2024年8月31日被接受出版:2024年8月15日doi:10.7752/jpes.2024.08214摘要:这项研究探讨了报道的数据和预测分析作为运动员培训计划的长期生成方法的使用。从607名高等教育学生那里收集的数据(平均年龄= 16.86; STD = 1.22),包括从物理测试和活动记录中进行的测量。数据集包含29个变量,这些变量是对培训程序的预测准确性的。我们利用Microsoft Azure机器学习来确定特征对结果的重要性,并利用Power BI可视化聚合特征对跑步距离的影响。初步发现表明,专注于训练工作的最佳年龄范围在16至17岁之间。该结果由Spearman相关系数为0.42支持,根据关键骨料特征规定了年龄组和预测的性能结果之间的中等正相关关系。特别是四个关键特征会显着影响性能,而其他变量的影响很小。该研究强调了这些总特征在预测训练成功方面的重要性。总而言之,该研究强调了强大的报告过程的重要性以及在制定培训计划中使用预测分析的重要性。它标识了四个关键特征,这些功能对实现的性能产生了重大影响。虽然这四个功能至关重要,但研究还承认,尽管有影响力较小,但其他变量仍然可能影响结果。这种全面的数据收集和分析方法为优化运动员培训计划提供了坚实的基础,以确保培训工作既有目标又有效。这些发现为旨在通过数据驱动的培训策略提高运动表现的教练和体育科学家提供了宝贵的见解。关键字:绩效优化,运动分析,数据驱动培训。简介
抽象背景。体育结果预测分析基于博彩应用结果,尚未受到摩洛哥有关组织的学术研究。目标。本研究旨在使用具有弹性净算法的机器学习回归模型来预测足球国家联盟的排名,我们在其中确定了重要特征的预测重量。方法。自2009/2010赛季以来的8个常规球队的历史分数数据集被手动填充并分为9列:赛季,球队,得分,进球差(+/-),比赛(M),比赛赢得(W),比赛(w),匹配(D)(D),比赛丢失(L),进球(F)和(F)和(F)和(a)。然后将其预处理成分类数据,分类哈希和数值。结果。机器学习分析导致R 2得分= 0.999,NRMSE = 0.001和Spearman相关性= 0.997。然而,与2021/2022季节的实际结果相比,预测的排名从8个起到了约5个。结论。与回归分析结果相比,实际结果的排名预测已准确地占75%。通过包括其他参数,这证明数据质量需要更精确。关键字:足球排名,机器学习,回归,预测。引言足球成绩和结果预测一直是Tips和博彩市场专家(1)的重点中心,并且已成为教练,体育科学家,分析师和表现专家的更重要的感兴趣中心;设计最佳实践,训练和竞争任务(2-4)。因此,研究人员已经开始应用数学公式和统计数据(5)来预测结果,而机器学习和智能算法已被普遍使用(6),并将足球结果视为一个分类问题,将一个班级的分类问题(赢得,输掉或抽奖)作为一个类别。但其他研究人员认为该问题是基于数值分析和值的回归模型中预测的数值价值,以预测特定的距离(7)或运动员在跳跃和投掷方面所实现的表现。运动结果预测问题在于要收集的数据,以及考虑对结果的影响的输入功能。一些研究人员专注于团队的历史数据,例如球队的要点,进球差,比赛,得分,丢失,进球,进球和对抗(8)的进球; (9)在最近几周和联盟中使用更多的预测标准作为团队的条件,而质量
1 水文地质学、自然资源评估系、环境研究与研究所、萨达特城大学、梅努菲亚 32897、埃及 2 环境地质学、环境系统自然资源测量系、环境研究与研究所、萨达特城大学、梅努菲亚 32897、埃及;ali.saleh@esri.usc.edu.eg 3 地质学系、理学院、达曼胡尔大学、达曼胡尔 22511、埃及;hendhussein@sci.dmu.edu.eg 4 农业工程、自然资源评估系、环境研究与研究所、萨达特城大学、梅努菲亚 32897、埃及 5 农业工程、环境系统自然资源测量系、环境研究与研究所、萨达特城大学、梅努菲亚 32897、埃及; farouk@esri.usc.edu.eg * 通讯地址:mohamed.gad@esri.usc.edu.eg (M.G.); salah.emam@esri.usc.edu.eg (S.E.)
脑机接口 (BCI) 的传统想象任务包括运动想象 (MI),即指示受试者想象移动身体的某些部位。这种想象任务对受试者来说很难。在本研究中,我们使用了一种研究较少但更容易执行的心理想象类型——视觉想象 (VI),即指示受试者在大脑中可视化一幅图片以实现 BCI。在本研究中,招募了 18 名受试者并指示他们观察两张视觉提示图片中的一张(一张是静态的,另一张是移动的),然后在每次试验中想象提示的图片。同时,收集脑电图 (EEG) 信号。希尔伯特-黄变换 (HHT)、自回归 (AR) 模型以及经验模态分解 (EMD) 与 AR 的组合分别用于提取特征。支持向量机 (SVM) 用于对两类 VI 任务进行分类。 HHT 的平均、最高和最低分类准确率分别为 68.14 ± 3.06%、78.33% 和 53.3%。AR 模型的 Te 值分别为 56.29 ± 2.73%、71.67% 和 30%。EMD 和 AR 模型组合获得的 Te 值分别为 78.40 ± 2.07%、87% 和 48.33%。结果表明,基于 EEG 可分离多个 VI 任务,并且用于 VI 特征提取的 EMD 和 AR 模型的组合优于单独的 HHT 或 AR 模型。我们的工作可以为构建新的在线 VI-BCI 提供思路。