我们会检测每一批经过处理和加工的样品的贵金属类型和含量。我们可以通过火试金、化学分析、X 射线和 ICP 等方法检测金、银、铂、钯、铑和铱以及其他元素。
当两种成分不同的溶液混合时,会释放出混合的自由能。过去几十年来,人们深入研究了这种现象,以便获取所谓的盐度梯度能。电容混合 (CapMix) 是能够获取这种能量的最早的技术之一,其工作机制基于流体电化学电池,类似于超级电容器。由于这种混合现象适用于液体和气体,因此其想法是从人为 CO2 中获取能量。ERC 资助的 CO2CAP 项目首次提出利用绿色离子液体 (IL),即室温下的生物衍生熔盐,作为 CapMix 电池中的电解质和 CO2 吸收介质。其原理是在两个电极充电/放电期间,在 IL 中流动浓缩的 CO2 气流,交替进行真空步骤。CO2 将在电极/IL 界面处引起电荷的电双层 (EDL) 膨胀,从而将释放的混合能转化为电能。此外,我们预计,当存在热梯度以收集低品位废热时,也会出现类似的现象。本博士论文的主要研究目标包括(不一定全部):o 设计、制造和电/电化学表征定制流体超级电容器,利用创新架构能够
解决方案 SABIC 全力支持通过回收旧塑料来闭合材料循环。我们专注于商业化回收率高的化合物和用于可提高可加工性和最终使用性能的含回收物化合物的增强树脂。SABIC 在整个价值链上努力开发这些解决方案并提高整体可回收性。
舱外机动装置 (EMU) 内的现行废物管理系统由一次性尿布——最大吸收服 (MAG) 组成,它可以在长达 8 小时的舱外活动 (EVA) 期间收集尿液和粪便。长时间接触废物会导致卫生相关的医疗事件,包括尿路感染和胃肠道不适。从历史上看,在使用 MAG 之前,宇航员在开始体力消耗大的太空行走之前会限制食物摄入量或食用低残渣饮食,从而降低他们的工作绩效指数 (WPI) 并带来健康风险。此外,目前的 0.95 升宇航服内饮料袋 (IDB) 无法为更频繁、更远距离的太空行走提供足够的水,这更有可能出现需要延长离开航天器时间的应急情况。每磅货物运往太空的高昂运输成本和资源稀缺性加剧了这些挑战,凸显了节水废物管理的必要性。本文介绍了威尔康奈尔医学院梅森实验室开发的一种新型宇航员宇航服内尿液收集和过滤系统,该系统可以解决这些卫生和补水问题。该装置通过外部导管收集宇航员的尿液,并使用正向和反渗透 (FO-RO) 将其过滤成饮用水,创造可持续的卫生循环水经济,增进宇航员的健康。这项研究旨在使用改进的 MAG 实现 85% 的尿液收集率。改进的 MAG 将由内衬抗菌织物的柔性压缩材料制成,尿液通过硅胶尿液收集杯收集,该杯因男性和女性宇航员的不同而不同,以符合人体解剖学。湿度传感器检测到杯中尿液的存在,便会触发通过真空泵的尿液收集。 FO-RO 过滤系统的目标是至少回收 75% 的水,同时消耗不到 10% 的 EMU 能源。为了满足健康标准,滤液保持低盐含量(< 250 ppm NaCl)并有效去除尿液中的主要溶质(尿素、尿酸、氨、钙)。
PV模块已达到生命的尽头(EOL),通常可以回收。2016-2017 IEA PVPS任务12研究由国家可再生能源实验室(NREL)资助和EPRI审查了欧洲的PV回收技术,包括四个商业玻璃和金属回收商,这些商用玻璃和金属回收器会定期处理PV模块的批次批次,并为一个PILOT SCALE RECCALE RECCALE PROCESSITY和一个用于PV Modules。1,2 Heath等。 表明,需要恢复高价值材料,例如硅和纯净的银,以改善回收的经济学。 3在过去的几年中出现了新的商业和演示规模的回收选择,其中包括一些声称收回硅和银的声称。 有限的公共数据可用于试点或商业设施的回收流程。1,2 Heath等。表明,需要恢复高价值材料,例如硅和纯净的银,以改善回收的经济学。3在过去的几年中出现了新的商业和演示规模的回收选择,其中包括一些声称收回硅和银的声称。有限的公共数据可用于试点或商业设施的回收流程。
缺乏协调的收集和运输网络可能会产生严重的环境司法影响,尤其是在许多全球南方国家中,由于与适当的回收和处置相关的高成本,经常在不受管制的回收设施中处理寿命末(EOL)LIB。这个不受管制的非正式回收过程通常涉及手动处理,而无需足够的基础设施或安全措施,对工人的健康和环境构成了风险。4当不正确时,这些电池可以将其内容物释放到地面上,从而通过渗出浸润和地表水径流污染地下水。5铜,例如,诸如生物蓄积,毒性和营养转移等风险,可能导致DNA损伤。6
建立在美国脱棕榈蓝图的基础上 - 使用美国运输脱碳蓝图作为基础。近期和长期策略 - 确定可以采取的关键行动来克服净零解决方案的部署障碍,以下是众所周知的里程碑,目标和承诺 - 描述了在每种模式下脱碳的近期和长期访问中提议的近期和长期里程碑。近期行动 - 建议近期行动立即至2030年以支持这些策略,这与到2050年的净零排放途径一致。指标和指标:提出的指标和指标以跟踪每个模态扇区的进度。
全球向电动汽车(EV)的快速过渡,这是由于锂离子电池(LIB)技术的进步所推动的,在可持续发展和资源管理中带来了机会和问题。本研究研究了如何在EV LIB回收中纳入循环经济思想和增强技能,这可能是满足2030年可持续发展议程的战略方法。本文通过研究EV电池回收,劳动力技能差距以及循环方法的经济影响来探讨环境可持续性,经济增长和社会公平之间的关系。基于现有文献,该研究强调了循环经济实践在提高资源效率,降低环境污染和支持各种可持续发展目标(SDG)方面的重要性,尤其是那些有关负责任的消费和生产(SDG 12)的重要性(SDG 12),气候行动(SDG 13),以及行业,创新,创新和基金9)。这项研究强调了教育对可持续发展(ESD)在准备劳动力方面的重要性,并具有适应更可持续和循环经济的基本技能。它还突出了当前的回收方法中的重大障碍,例如技术限制,立法差异以及全球合作和标准化的必要性。本文提出了实用政策建议和未来的研究途径,以提高电动电动电动电池回收的可持续性。倡议涉及建立全球回收标准,通过激励措施促进循环经济模式,促进技术创新以及促进国际合作和知识交流。
尼日利亚是撒哈拉以南非洲最大的铅酸电池回收行业之一。至少有十个设施在工业规模上回收电池,主要用于出口回收的非有产金属。项目证券面通过三个干预措施支持回收部门的升级:(1)提供有关环境健康和安全的培训以回收设施; (2)通过支持尼日利亚监管机构执法来创造激励措施改善设施; (3)通过寻求负责电池处理解决方案的太阳能公司和国际公司从批准的设施中采购次要原材料的国际公司,为高标准的回收创造商机。
