工业或城市设施产生的废热是一种尚未得到充分利用且长期被忽视的能源,而供暖和制冷占欧洲最终能源需求的一半。从 2010 年代初开始,废热回收 (WHR) 被认为是能源转型的一个关键挑战,并倾向于纳入不同层面的能源战略。本文分析了 WHR 如何成为欧洲和法国的公共政策问题。基于文献综述,分析表明 WHR 一直被视为一个技术经济问题,而其发展的一些障碍(法律、组织)仍未得到解决。对欧洲和法国能源议程的研究表明,WHR 是如何逐渐开始被视为仅次于可再生能源的能源资源的。因此,提出了一些问题,即社会科学如何对解决 WHR 的扩展研究议程做出进一步贡献。
R. Vasanthakumar博士于2008年成立的Karpagam理工学院,其建立的愿景是提供优质的技术教育,强调创新,研究以及社会和道德价值观的发展。 该机构配备了现代教学工具,维护良好的实验室,郁郁葱葱的绿色环境和最先进的基础设施。 位于哥印拜陀,我们的机构被公认为是一家主要的教育枢纽,致力于在技术教育和研究方面提供卓越的发展。 该机构拥有一个动态的教师,一个多元化的学生团体和世界阶级的设施,使其成为学习的真正问题。 工程教育是在六个部门提供的最好的:CSE,IT,AI&DS,ECE,EEE和Mech。 该机构已获得NBA的认可(CSE,ECE和IT),并从NAAC获得了A ++等级。,其建立的愿景是提供优质的技术教育,强调创新,研究以及社会和道德价值观的发展。该机构配备了现代教学工具,维护良好的实验室,郁郁葱葱的绿色环境和最先进的基础设施。位于哥印拜陀,我们的机构被公认为是一家主要的教育枢纽,致力于在技术教育和研究方面提供卓越的发展。该机构拥有一个动态的教师,一个多元化的学生团体和世界阶级的设施,使其成为学习的真正问题。工程教育是在六个部门提供的最好的:CSE,IT,AI&DS,ECE,EEE和Mech。该机构已获得NBA的认可(CSE,ECE和IT),并从NAAC获得了A ++等级。
摘要:铁离子作为传统的高效芬顿反应催化剂,与过氧化氢反应产生羟基自由基,从而在废水中降解有机污染物。然而,在水溶液中,铁离子的化学稳定性较差,因此很难从反应培养基中恢复。我们提出,它们与双嗜嗜性块共聚物的络合可以导致形成具有改善化学和胶体稳定性的纳米催化剂。以不同的摩尔比与双嗜嗜性嵌段共聚物的溶液的溶液(即聚(氧化乙烷)-Block-Poly(丙烯酸)(丙烯酸)形成胶体结构的溶液,添加了铁离子。自发地形成高度单分散胶束,其水动力直径约为25 nm。通过结合多种技术,可以实现核心 - 壳体结构的精确描述。这些结构在3-7的pH范围内化学稳定,并通过萘酚蓝色黑色的降解成功地用作光纤维催化剂。与传统的同质芬顿反应相比,这些胶体结构具有改善的化学和胶体稳定性以及更高的可回收性。关键字:杂交Polyion复合物,胶束,块共聚物,照片芬顿,纳米催化剂,胶体
这项研究的目的是评估弗吉尼亚州建造的回收塑料改装(RPM)沥青混合物现场试验。与弗吉尼亚州运输部(VDOT)相比,这项研究记录并评估了两种植物生产的RPM混合物(VDOT)典型的D和E表面混合物作为参考混合物的结构性和实验室性能。d和e分别是指中度至高点至极高的流量。报告了关于表面制备,植物生产或铺路操作的既定常规实践的变化。此外,这项研究试图检测和量化由人行道磨损产生的材料中的微塑料的存在,这些材料可能通过雨水径流动员。作为RPM沥青混合物是新型材料,该目标包括鉴定和开发适当的微塑料实验室分析方法。总的来说,这项工作是关于通过现场试验将回收塑料掺入沥青混合物中的最初和少数记录发现和经验教训的努力之一。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
离子交换树脂是通过自由基聚合有机单体(如苯乙烯)在乳液滴中的反应制备而成的。由于离子交换树脂具有带电极性基团作为活性位点,因此需要通过二乙烯基苯等化学交联聚合物,以防止珠粒溶解。交联度是树脂珠粒选择性的关键参数,它提供了对功能基团所需的可及性。传统上,离子交换树脂是通过悬浮聚合制备的,这会产生较宽的珠粒尺寸分布。因此,由于交联不均匀,通常会获得较低的操作容量和较低的机械和渗透稳定性。因此,朗盛开发了一种独特的技术来生产单分散珠粒,该技术基于单分散液滴的封装。有趣的是,由于单分散液滴内的均匀聚合,这些树脂具有优异的机械和渗透稳定性以及出色的交换动力学。
DOI: https://dx.doi.org/10.30919/es1260 Polymerization Dynamics of Zwitterionic Monomers with Polyacrylamide for Enhanced Oil Recovery Gulim Imekova, 1, 2 Damir Karimov, 3 Nurxat Nuraje 3 and Zhexenbek Toktarbay 1,* Abstract In this paper, the synthesis of zwitterionic详细研究了用于增强石油回收(EOR)的共聚物。通过自由基共聚合合成共聚物。不同的摩尔比(2:98,10:90,20:80,30:70)的s翼sulfobetaine-n-(3-二甲基氨基)丙烯酰胺(P(SB-DMAPMA))与丙烯酰胺(AM)共聚。导致以核磁共振(NMR)和傅立叶变换红外光谱(FTIR)为特征的共聚物。用静态光散射方法测量共聚物的分子量。使用三种方法计算单体的反应性比:Fineman-Ross,Kelen Tudos和Mayo-Lewis。该研究还讨论了纯净水和纯净水中的际离子共聚物和流变特性的热稳定性,并在具有不同电荷的高含量条件下。通过流变测量分析添加不同盐后的粘度增加,分子结构的图像是通过传输电子显微镜(TEM)拍摄的。这项研究的发现对于提高EOR过程的效率很有用,为更先进的石油回收技术铺平了道路。
在同一反应堆中进行多步反应的两个或多个催化剂同时进行串联催化,可以使(BIO)药物和纤维制造能够变得更加可持续。在此报告,在合成的共价有机框架胶囊中,金属纳米颗粒和生物催化系统的共晶型化合物COFCAP-2的作用像是人工细胞,因为该细胞在300-400 nm cavities/egress/egress/egress/egress中被捕获在300-400 nm nm cavities in cacy/egress中。2 nm窗口。首先将COFCAP-2反应器涂在电极表面上,然后用Dinitrogen作为原料来制备十一例同期胺。胺在水中的环境条件下以> 99%的对映体过量量制备,包括药物中间体和活性药物成分。重要的是,COFCAP-2系统通过保留性能进行了15次回收,解决了酶的相对不稳定性和较差的回收能力,这阻碍了其广泛的实施,从而有效,低废物的化学物质和(生物)药物。
通过热解回收SMC浪费,以可持续生产由BarkinDurmuş提交的汽车组件,以部分满足中东技术大学的微观和纳米技术硕士学位的要求,由Naci Emre Altun Dean教授,NACI EMRE ALTUN DEAN博士,NACI EMRE ALTUN DEAN博士,Densogy and Applied Scienology and Indiz scip. niz themoty niz off. Nibiz and Iniz theiz theiz the niz the niz the niz the niz the niz the niz the the niz the niz the niz for。 AlmılaGüvençyazıcıoğlu博士,微观和纳米技术,MetufeyzaKazançourizençouzerinç共同维持诉讼,草原研究所,UIUC研究委员会成员:Cevdet Kaynak Metallurgical and Materiatial andu anm Metullucul。工程学,METU教授Burcu AkataKurç微型和纳米技术,元教授Hüsnüemrahünalan冶金和材料工程师Eng。合作。Hacettepe UniversityHacettepe University