随着时代的发展和科技的进步,最新的基因治疗技术被发现,即与Cas9蛋白相关的成簇的规律间隔的短回文重复序列(Clustered Regularly Interspaced Short Palindromic Repeats)CRISPR/Cas9或者CRISPR/Cas9。 CRISPR 是一种高度灵活的基因组操作工具,因为 Cas 酶与目标 DNA 的结合与其切割目标 DNA 的能力无关(Putri,nd)。该方法利用细菌中发生的系统和自然程序。细菌能够自身产生酶蛋白,因此 CRISPR/Cas9 基因治疗技术比其他基因疗法更具成本效益(Uddin et al.,2020)。细菌具有保护自己免受各种病毒侵害的能力。细菌进行的初始阶段是切割攻击细菌的病毒的DNA(Damara,2017)。
成簇的规律间隔短回文重复序列 (CRISPR) 和 CRISPR 相关蛋白 (Cas9) 系统是一种适应性免疫反应防御机制,古细菌和细菌利用该机制来降解外来遗传物质。该机制可以重新用于其他功能,包括哺乳动物系统的基因组工程,例如基因敲除 (KO) (1,2) 和基因激活 (3-5)。CRISPR 激活质粒产品利用与 VP64 激活域融合的 D10A 和 N863A 失活 Cas9 (dCas9) 核酸酶与 sgRNA (MS2) 结合,从而实现特定基因的识别和上调,sgRNA (MS2) 是一种靶向特异性 sgRNA,经过设计可结合 MS2-P65-HSF1 融合蛋白 (5)。这种协同激活介质 (SAM) 转录激活系统* 提供了一个强大的系统,可最大限度地激活内源性基因表达 (5)。
成簇的规律间隔短回文重复序列 (CRISPR) 和 CRISPR 相关蛋白 9 (Cas9) (CRISPR/Cas9) 系统是一种强大的工具,可以实现精确高效的基因操作。在相对较短的时间内,CRISPR 凭借其高效率、简单性和低成本可编程性而成为首选的基因编辑系统。此外,近年来,CRISPR 工具包迅速扩展,新兴进展在揭示人类疾病的分子机制和新治疗策略方面显示出巨大的潜力。在这篇综述中,我们提供了对 CRISPR 技术的最新进展及其对精准医疗的影响的看法,包括靶标识别、疾病建模和诊断。我们还讨论了表观基因组、碱基和主要编辑等新方法对临床前癌症药物发现的影响。
与锌指核酸酶 (ZFN) 和转录激活因子样效应核酸酶 (TALENS;图 1) 相比,成簇的规律间隔短回文重复序列-CRISPR 相关 9 (CRISPR-Cas9) 技术设计简单、成本低、效率高、操作简单,已成为近年来应用最广泛的基因编辑技术。CRISPR-Cas9 是一种在细菌中发现的适应性免疫反应,与其他基因编辑技术不同,它可以利用病毒和非病毒平台在多种生物体和细胞类型的双链断裂 (DSB) 中提供熟练的基因组编辑。1 CRISPR-Cas9 技术正在迅速应用于所有生物医学研究领域,包括心血管 (CV) 领域,它促进了人们对心血管疾病 (CVD)、心肌病、电生理学和脂质代谢的更深入了解,并创建了各种细胞和动物模型来评估新疗法。2
摘要:如何确保新兴生物技术(如基于成簇规律间隔短回文重复序列 (CRISPR) 的基因组编辑)的安全、有效和合乎道德的使用是一个全球性挑战。2018 年“CRISPR 婴儿”的出现使这一问题成为公众关注的焦点,并引发了中国和世界各国全面的监管改革。本文通过阐述生物安全法、民法典、刑法和专利法四个重要法律领域中旨在预防风险和保护与人类基因组编辑相关的个人权利、公共健康和社会道德的最突出规定,分析了中国这一事件驱动的监管改革。这种情况凸显出,尽管正在实施监管,但无论是在国家层面还是跨国层面,法律与先进技术之间的差距仍然存在(即,
摘要:CRISPR(成簇的规律间隔的短回文重复序列)/Cas9 是一种独特的基因组编辑工具,可轻松用于各种应用,包括功能基因组学、转录组学、表观遗传学、生物技术、植物工程、牲畜育种、基因治疗、诊断等。本综述重点介绍了当前的 CRISPR/Cas9 概况,例如,具有改进特性的 Cas9 变体、Cas9 衍生蛋白和融合蛋白、Cas9 递送方法、对 CRISPR/Cas9 蛋白的预先存在的免疫力、抗 CRISPR 蛋白以及它们在 CRISPR/Cas9 功能改进中的可能作用。此外,本综述还详细介绍了基于 CRISPR/Cas9 的诊断和治疗方法。最后,本综述讨论了使用 Cas9 直系同源物和其他 CRISPR/Cas 蛋白未来扩展基因组编辑器工具箱的前景。
在生态学和进化领域,大多数旨在将基因型与表型联系起来的研究很少使用功能工具来验证已识别的基因座。RNA 干扰 (RNAi) 和成簇的规律间隔回文重复序列 (CRISPR)-Cas 基因组编辑的最新发展大大提高了功能验证的可行性。然而,当应用于新兴模式生物时,这些方法面临着特定的挑战,包括基因沉默的空间控制有限、敲入效率低和功能验证的通量低。此外,迄今为止的许多功能研究并没有重现生态相关的变异,这限制了它们对进化过程的更深入了解范围。因此,我们认为,通过同源定向修复 (HDR) 进行等位基因替换的基因编辑的增加使用将极大地有利于生态学和进化领域。
简介 成簇的规则间隔回文重复序列 (CRISPR) 和 CRISPR 相关 (Cas) 蛋白是一类由细菌编码的、RNA 引导的可编程 DNA 靶向和切割系统。由于其使用可定制的单向导 RNA (sgRNA) 的可编程特性,CRISPR-Cas 已实现强大的汇集筛选,以探索基因组范围内遗传扰动的功能。以最常用的 CRISPR-Cas9 系统为例,化脓性链球菌 Cas9 蛋白可以与 110 个核苷酸 (nt) 的 sgRNA 复合,该 sgRNA 包含一个 20 nt 序列,该序列与目标 DNA 区域互补结合并诱导双链断裂 (DSB)。基因组 DNA 上的这种切割机制会触发宿主非同源末端连接 (NHEJ) 或同源定向修复 (HDR)
摘要:多聚谷氨酰胺脊髓小脑共济失调 (SCA) 是由单个基因编码区胞嘧啶-腺嘌呤-鸟嘌呤重复扩增引起的六种常染色体显性共济失调的异质性群体。目前,这些疾病尚无治愈或减缓疾病的治疗方法,但它们的单基因遗传为基因治疗策略的发展提供了理论依据。事实上,RNA 干扰策略已在 SCA1、SCA3、SCA6 和 SCA7 的细胞和/或动物模型中显示出有希望的发现。此外,反义寡核苷酸疗法已在 SCA1、SCA2、SCA3 和 SCA7 模型中提供了令人鼓舞的概念证明,但它们尚未进入临床试验。相反,基因编辑策略,例如成簇的规律间隔的短回文重复序列 (CRISPR/Cas9),已被引入
合成基因回路使我们能够以可编程的方式控制细胞行为,这对于几乎所有旨在利用工程活细胞执行用户定义任务的应用都至关重要。转录因子 (TF) 是合成电路构建的“经典”工具,但它们的一些固有限制,例如模块化、正交性和可编程性不足,限制了此类正向工程工作的进展。在这里,我们回顾了 CRISPR(成簇的规律间隔的短回文重复序列)技术如何为合成电路设计提供新的强大可能性。CRISPR 系统在模块化、可预测和标准化电路设计的许多方面都比 TF 具有更优越的特性。因此,选择 CRISPR 技术作为合成电路设计的框架是补充或替代合成电路中 TF 的有效替代方案,并有望实现更雄心勃勃的设计。