量子纠缠:自旋 1/2 Masatsugu Sei Suzuki 和 Itsuko S. Suzuki 纽约州立大学宾汉姆顿分校物理系 (日期:2022 年 2 月 7 日) 在这里我们讨论量子纠缠的物理学。起初,本科生如果只想知道量子纠缠的基本点,可能会在理解技术术语的定义时遇到一些困难,例如超距幽灵作用、非局域性、局域性、隐变量理论、可分离性、量子比特等等。这些词的定义在附录中给出(来源:维基百科)。贝尔不等式的推导在数学上并不那么复杂。人们必须从实验的角度验证贝尔不等式不满足量子纠缠现象,并使用纠缠的自旋或光子。到目前为止,已经出版了许多关于量子纠缠、量子信息和量子计算机的书籍。即便我读了这些书,包括量子力学的教科书,我还是没有充分理解超距幽灵行为到底是怎么回事。为了给本科生讲授量子纠缠,我觉得有必要更详细地了解量子纠缠的这种怪异性。当我努力理解爱因斯坦命名的超距幽灵行为时,我有幸读了一本名为《爱因斯坦:他的一生和宇宙》(W. 艾萨克森著)的书。我意识到这本书可以很好地描述量子纠缠行为的怪异性。当然,那些想从数学上了解这种怪异行为本质的物理学家,可能不会满足于艾萨克森给出的简单明了的解释。这里将这本书的内容总结如下。(a)量子力学断言,粒子除了被观察时外,没有确定的状态,两个粒子可以处于纠缠态,因此对一个粒子的观察可以立即决定另一个粒子的性质。一旦进行任何观察,系统就会进入固定状态。(b)这对于微观量子领域来说可能是可以想象的,但当人们想象量子领域与可观察的日常世界之间的交集时,就会感到困惑。(c)EPR 论文未能成功证明量子力学是错误的。但最终确实清楚,量子力学与我们对局域性的常识理解不相容——我们对远距离幽灵般的作用的厌恶。奇怪的是,爱因斯坦显然比他希望的要正确得多。
泡沫在两个不混溶的阶段之间具有细胞网络结构。泡沫的结构动力学吸引了科学和工业应用中的研究人员。尤其是,由于物理和机械性能的组合,固体金属泡沫令人兴奋,例如与低特异性重量或高抗压强度结合使用,结合了合适的能量吸收特性,因此具有高度和机械性能。他们的网络结构使它们适合于汽车和航空航天行业的轻质结构或崩溃的能量吸收[1]。复合金属泡沫适用于锂离子电池[2]。流体泡沫或细胞流体由均匀分散的气泡和连续的液体组成。流体泡沫内部的气泡通常不稳定,并且随着时间的流逝而发展以最大程度地减少其表面能量[3]。在物理学中,泡沫是一种最小化表面能量的材料的模型系统:肥皂泡沫,乳液,磁石材和晶界[3],因为它们最终发展为统计平衡的固定状态[4]。在数学中,泡沫是一个模型系统,用于研究与最小周长相关的等速度问题,并且在一个区域中具有固定数量的气泡[3]。二维随机细胞网络(2D泡沫)无处不在,例如肥皂泡沫,破碎模式和生物表皮[4]。初始瞬态后,纤维破裂引发了气泡的动态重排,那里的气泡迅速融合并慢慢发展到新的准平衡状态。清洁泡沫最初不稳定的泡沫随着时间的流逝而发展,通过减少其总表面积,随着气泡的平均大小随时间的变化而通过气泡之间的破裂(聚结)破裂或通过气体的不同交换而增长(凝聚)[5]。在玻璃,凝胶和泡沫等均衡系统中缓慢的动态和老化影响是一个丰富而有趣的话题,但仍然知之甚少[6]。诸如泡沫之类的细胞模式在自然界中广泛出现,例如生物组织中的细胞,多晶中的晶粒,胶体材料中的谷物聚集体以及一品脱啤酒的气泡[7,8]。物理学家在理论上和实验上广泛研究了泡沫的集体静态和动力学[7-15]。泡沫不仅在工程上,而且在软物质物理学上都引起了很多关注[7]。
温莎大学化学与生物化学系,温莎401号,温莎,on,n9b 3p4,加拿大,加拿大N9B 3P4