泡沫在两个不混溶的阶段之间具有细胞网络结构。泡沫的结构动力学吸引了科学和工业应用中的研究人员。尤其是,由于物理和机械性能的组合,固体金属泡沫令人兴奋,例如与低特异性重量或高抗压强度结合使用,结合了合适的能量吸收特性,因此具有高度和机械性能。他们的网络结构使它们适合于汽车和航空航天行业的轻质结构或崩溃的能量吸收[1]。复合金属泡沫适用于锂离子电池[2]。流体泡沫或细胞流体由均匀分散的气泡和连续的液体组成。流体泡沫内部的气泡通常不稳定,并且随着时间的流逝而发展以最大程度地减少其表面能量[3]。在物理学中,泡沫是一种最小化表面能量的材料的模型系统:肥皂泡沫,乳液,磁石材和晶界[3],因为它们最终发展为统计平衡的固定状态[4]。在数学中,泡沫是一个模型系统,用于研究与最小周长相关的等速度问题,并且在一个区域中具有固定数量的气泡[3]。二维随机细胞网络(2D泡沫)无处不在,例如肥皂泡沫,破碎模式和生物表皮[4]。初始瞬态后,纤维破裂引发了气泡的动态重排,那里的气泡迅速融合并慢慢发展到新的准平衡状态。清洁泡沫最初不稳定的泡沫随着时间的流逝而发展,通过减少其总表面积,随着气泡的平均大小随时间的变化而通过气泡之间的破裂(聚结)破裂或通过气体的不同交换而增长(凝聚)[5]。在玻璃,凝胶和泡沫等均衡系统中缓慢的动态和老化影响是一个丰富而有趣的话题,但仍然知之甚少[6]。诸如泡沫之类的细胞模式在自然界中广泛出现,例如生物组织中的细胞,多晶中的晶粒,胶体材料中的谷物聚集体以及一品脱啤酒的气泡[7,8]。物理学家在理论上和实验上广泛研究了泡沫的集体静态和动力学[7-15]。泡沫不仅在工程上,而且在软物质物理学上都引起了很多关注[7]。
主要关键词