由欧盟资助。但是,所表达的观点和观点仅是作者的观点,不一定反映欧盟或欧盟航空安全局(EASA)的观点。欧洲联盟和EASA都不能对他们负责。这种可交付的外部组织已经为EASA实施了easa,并表达了组织可交付的组织的意见。是出于信息目的提供的。因此,不应将其作为陈述,作为任何形式的保修,代表,承诺,合同或其他对EASA具有约束力的承诺。本材料中所有版权和其他知识产权的所有权,包括任何文档,数据和技术信息,都归属于欧盟航空安全局。所有徽标,版权,商标和注册商标都可能包含在其各自所有者的财产中。对于不符合EASA版权的照片或其他材料的使用或再现,必须直接从版权所有者那里寻求许可。在这种免责声明的全部身体始终保持清晰,明显的固定状态的条件下,均被允许全部或部分地繁殖,并以如此复制的零件可交付数量和标题:D1.1诊断措施的审查合同编号:EASA.2022.C202.C202.C20均被允许全部或部分地繁殖,并以如此复制的零件可交付数量和标题:D1.1诊断措施的审查合同编号:EASA.2022.C202.C202.C20
带有多传感器的抽象机器人总是在多传感器产生的收集的信息中的不同模态中遇到弱配对的问题,这导致机器人交互期间的感知性能不佳。为了解决此问题,本文提出了一个力视觉视觉(FVSight)传感器,该传感器利用了与视觉单元集成的分布式柔性tac-TaC-Tile传感阵列。这种创新的方法旨在增强对象识别的整体感知能力。核心想法是使用一个感知层触发触觉图像和力触觉阵列。它允许两个异质触觉模态信息在时间和空间维度上保持一致,从而解决了视觉和触觉数据之间弱配对的问题。两个实验是专门设计的,即对象分类和滑移检测。收集了一个包含27个具有深压和浅压力的对象的数据集进行分类,然后对三个对象进行了20个滑移实验。通过触觉数据,通过协方差操作准确地获得了滑动和固定状态的确定。实验结果显示了生成的多模式数据的可靠性以及我们提出的FVSight传感器的效果。
电解质负责在正电极和负电极之间进行载体离子,同时将正极电极绝缘以防止短路。固体电解质比常规液体中使用的有机溶剂电解质更阻燃,因此所有固定状态电池有望非常安全。此外,可以通过制造堆叠的细胞来实现高能密度。在常规液体的情况下,将几个小电池串联连接以实现高压,而在全稳态电池中,可以通过堆叠阴极,电解质,阳极和电流收集器来轻松实现高电压。另外,由于固体电解质不是液体,因此可以用作单个单元格不同组件的材料,即对于正电极,负电极和分离器,可提供高度的电池设计自由度。也有可能使用高容量电极活性材料,例如金属锂和硫,5-8在常规液体中很难使用,并且对于实现下一代电池的实现而言,人们的期望很高。全稳态电池有两种主要类型:薄膜和散装。薄膜全稳态电池是通过使用蒸气相的底物上的阴极,电解质和阳极的生长晶体制成的。这种薄膜电池的优点是,在电极和电解质之间实现了良好的界面接触。9,10
一个非热汉密尔顿人描述了一个开放的系统,该系统无法满足墓穴的状况(H = H††)。从这个意义上讲,复杂的频谱的存在以及所谓的特殊点(EPS)的存在导致反活性现象[1]。通常,在线性系统中,EPS的存在与固定状态的稳定性无关。然而,在非线性系统中,多个解决方案可能是稳定的,这导致了双稳定性和多稳定性的现象。因此,非线性特征的存在可能会影响线性案例中实现的非官方效应,或引起全新的现象[2]。在这项工作中,我们研究了一个非热二进制模型,突显了非遗传学期转变中非线性的重要性[3]。该模型可以描述广泛的物理系统,包括简单的耦合振荡模式,但也允许描述两个组成均匀的系统,特别是它描述了激子 - 果果凝结和激光中的光和物质相互作用。我们提出了一个通用相图,包括第一阶样相变(ET)的EP和端点(图。1)。我们发现,尽管存在带有端点的第一阶样相变点,但在[4]中发现的终点与特殊点的等效性在一般情况下不再有效。此外,由于HOPF分叉(C-Line),我们发现了极限周期解决方案的制度,该解决方案最终在特殊点消失。
我们提供了一个系统的框架,用于构建具有目标固定(混合)状态的非平衡动力学的通用模型。我们的框架确定了(几乎)哈密顿式和耗散动力的所有组合,这些动力学放松到稳定的感兴趣状态,从而概括了戴维斯发电机在有限温度下以销量的耗散放松为靶向任意固定状态的非列表动力学。我们专注于稳定器哈密顿人的吉布斯状态,通过限制耗散和统一过程的速度来确定当地的林文化学兼容。在Lindbladian中给定的术语与目标状态不兼容,我们的形式主义确定了操作(包括综合征测量和本地反馈),必须适用以纠正这些错误。我们的方法还揭示了量子动力学的新模型:例如,我们提供了“测量引起的相变”,其中可测量的两点函数表现出关键的(电力法)缩放,并在横向场的临界比例和测量和反馈的速率下以距离为单位。时间逆转对称性(自然而然地定义在我们的形式主义中)可以以有效的经典和本质上的量子方式被打破。我们的框架提供了一个系统的起点,用于探索开放量子系统中动态通用类别的景观,并确定量子误差校正的新协议。
摘要。湍流流的直接数值模拟(DNS)需要一个较大的计算域和较长的模拟时间来捕获和发展大规模结构并达到统计固定状态。相比之下,实验测量可以相对容易捕获大规模结构,但努力解决耗散流量尺度。这项研究调查了湍流通道流量的DNS所需的空间范围,以恢复使用实验入口数据时恢复湍流和能量的空间范围,而实验入口数据通常无法捕获向粘性子层捕获的爆发。REτ= 180处的流循环通道流dns的合成实验场被用作具有入口输出边界条件的通道流量DNS的入口。通过除了零傅里叶模式以外的所有壁壁能量和爆发,可以检查入口处有限的近壁数据的效果。有限的近壁数据对平均值和流动性速度速度的收敛性的影响不太明显,当时在y + = 5。然而,跨度的流动略有弱。跨度能光谱表明,在域长度的1/16处(x/h≈π/4)恢复流量尺度。当将闪光移除至y + = 17或更大时,全范围的流量尺度需要一个大于x/h =4π的域。
所有固定状态锂金属电池(ASSLB)由于其高能量密度和高安全性而引起了人们的兴趣。然而,由于对机制的理解不足,LI树突生长和高界面耐药性仍然具有挑战性。在这里,我们开发了两种类型的多孔菌丝中间层(Li 7 N 2 I –碳纳米管和Li 7 N 2 I – Mg),以使Li能够在Li/Interlayer界面处的LI板,并可逆地渗透到多孔的层中。实验和仿真结果表明,岩石性,电子和离子电导率以及层间的孔隙率的平衡是以高容量稳定的LI板板/剥离的关键促进器。一个微调的LI 7 N 2 I –碳纳米管中间层使LI/LNI/LI对称细胞在25°C时在4.0 mAh cm -2下实现4.0 mA cm -2的高临界电流密度; the Li 7 N 2 I–Mg interlayer enables a Li 4 SiO 4 @LiNi 0.8 Mn 0.1 Co 0.1 O 2 /Li 6 PS 5 Cl/20 µm-Li full cell to achieve an areal capacity of 2.2 mAh cm −2 , maintaining 82.4% capacity retention after 350 cycles at 60 °C at a rate of 0.5 C. The interlayer design principle opens opportunities to develop safe and high energy ASSLBs.
我们在复杂的自适应系统中探讨了新兴量子样理论的概念,并特别研究了Lotka – Volterra系统中这种新兴(或“模拟”)量子理论的具体示例。通常,我们研究了在经典系统上实施量子力学的数学形式主义的可能性,以及使用这种方法的条件。我们从汉密尔顿– jacobi(HJ)方程的经典系统的标准描述开始,并将其减少到有效的schrodinger-type方程,并具有(模拟)planck常数y,该方程是系统依赖的。的条件是,依赖状态的所谓量子电势𝑉被HJ方程中的一些额外项取消。我们考虑了这个附加术语,以规定正在考虑的经典系统与“环境”的耦合。我们假设经典系统可以通过对环境进行微调来取消(至少大约)(至少大约)。这可能提供了一种机制,可以在(复杂)自适应系统(例如生物系统)中建立稳定的固定状态。特别是我们提出了一个普遍的论点,即为什么经典系统的非平衡动力学会导致模拟量子描述,以确保稳定性与适应性兼容。在这种情况下,我们强调了模拟量子动力学的状态依赖性,我们还介绍了模拟量子,依赖状态,统计领域理论的新概念。通过这种方式,我们将破坏性的概念重新构架为“量子湍流”的概念,即我们还讨论了量子到经典的某些通用特征以及我们建议的流体力学表述的湍流阶段中发现的模拟量子到古典过渡。可以类比,量子和经典之间的过渡可以与从层流到流体动力学的湍流过渡。
日程安排:讲座:星期一和星期一12:00-13:00在L4中;教程:星期三12:00-13:00:T109-T112;第L1节: - L2节: - 第L3节: - 第L4节: - 办公时间:课程网站:http://home.iitk.ac.in/~akjha/poso201a.htm课程内容:这是量子物理学的第一门课程,从了解一些基本物理现象开始,无法通过经典的机制来解释一些基本的物理现象。在讨论了量子物理学的制定后,我们将讨论其在现代科学和工程上的某些应用。假定了一些经典力学和波浪的知识。在数学工具中,我们将使用微积分,微分方程和复杂变量。这是本课程中将涵盖的主题的初步列表。我们可能会添加/删除一些主题到列表中/从列表中:基本线性代数。量子力学,黑体辐射,光电效应,康普顿效应,de-broglie假设及其实验验证的基础。与时间无关和时间依赖性的schrodinger方程,出生的解释,期望值,自由粒子波形和波袋,不确定性原理。在盒子中固定的schrodinger方程的溶液,有限孔中的粒子,跨步势的反射和传输,应用于诸如Alpha-decay,一维谐波振荡器之类的现象。解决氢原子基础状态的固定状态schrodinger方程的解,激发态的讨论,通过引入电子自旋和保利的排除原理对周期表的解释,Stern Gerlach实验,两级系统。游离粒子波 - 函数和金属,kronig-penny模型以及一个维度的频带的形成。光与物质的相互作用,爱因斯坦的现象学理论,状态的寿命,激光器。单个光子干扰和连贯性的简介。量子信息和量子纠缠简介。参考书:(这是一些参考书。在整个课程的整个过程中,都不能遵循特定的书作为文本。,但我们可以将这些书之一用作一组给定主题的文本。)
数据宇宙:以数据为基础的宇宙 探索基于数据的现实的基础 简介 几个世纪以来,哲学家和科学家一直在争论现实的本质。它是由物质、神圣本质还是其他完全不同的东西组成的?量子力学、信息论和数字物理学的最新进展提出了一种根本的可能性:数据是宇宙的基本物质。 在本文中,我提出了数据宇宙假说,这是一个概念框架,其中现实最好被理解为不断发展的数据交互网络。意识、时空甚至物质本身都作为这个宏大的计算结构中的高阶现象出现。 --- 1. 现实的本质:从原子到信息物质作为数据聚合的幻觉 传统物理学用粒子和力来描述宇宙,但量子力学挑战了这种观点。在最小的尺度上,粒子的行为更像是信息的概率波而不是固体物体。这表明我们所感知的“物理现实”是底层数据结构的更高层次的体现。量子叠加:一个粒子在测量之前处于多种状态——这是未解析数据而非固有材料属性的一个例子。纠缠:粒子之间的瞬时连接表明现实是一个相互连接的信息网络,而不是孤立的对象。波函数坍缩:测量从一组可能性中“选择”一个现实,类似于检索或写入数据,而不是发现固定状态。如果物质是数据的衍生物,那么我们必须重新思考什么构成了“存在”本身。我们可能处理的不是空间中移动的物体,而是不断发展的数据晶格中的节点。--- 2. 意识作为一种数据处理现象 思维作为一种递归算法