抽象的脑肿瘤分割是对医疗保健中诊断和治疗计划很重要的重要步骤。大脑MRI图像是根据建议的方法在收集数据并准备进一步分析之前先进行预处理的。建议的研究介绍了一种新策略,该策略使用以生物启发的粒子群优化(PSO)算法来分割脑肿瘤图像。为了提高准确性和可靠性,可以调整分割模型的参数。标准措施等标准度量,例如精度,精度,灵敏度,jaccard索引,骰子系数,特异性,用于绩效评估,以衡量建议的基于PSO的分割方法的有效性。建议方法的总体准确性为98.5%。随后的绩效分析分别为骰子得分系数,Jaccard指数,精度,灵敏度和特异性的91.95%,87.01%,92.36%,90%和99.7%的结果提供了更好的结果。因此,此方法对于放射科医生来说可能是有用的工具,可以支持它们诊断大脑中的肿瘤。关键字 - 脑肿瘤,群智能,粒子群优化,磁共振图像。
超分辨率医学图像可帮助医生提供更准确的诊断。在许多情况下,计算机断层扫描 (CT) 或磁共振成像 (MRI) 技术在一次检查期间会捕获多个扫描 (模式),这些扫描 (模式) 可以联合使用 (以多模态方式) 来进一步提高超分辨率结果的质量。为此,我们提出了一种新颖的多模态多头卷积注意模块来超分辨率 CT 和 MRI 扫描。我们的注意模块使用卷积运算对多个连接的输入张量执行联合空间通道注意,其中核 (感受野) 大小控制空间注意的减少率,卷积滤波器的数量控制通道注意的减少率。我们引入了多个注意头,每个头具有不同的感受野大小,对应于空间注意的特定减少率。我们将多模态多头卷积注意力 (MMHCA) 集成到两个深度神经架构中以实现超分辨率,并对三个数据集进行了实验。我们的实证结果表明,我们的注意力模块优于超分辨率中使用的最先进的注意力机制。此外,我们进行了一项消融研究,以评估注意力模块中涉及的组件的影响,例如输入的数量或头部的数量。我们的代码可在 https://github.com/lilygeorgescu/MHCA 免费获取。
2011 年 12 月 3 日 — 国防网络犯罪中心、美国国税局……在数字数据采集工具断言和测试计划版本 1.0 中测试案例。
本简报中的胸部成像人工智能 (AI) 技术是独立的软件平台,使用机器或深度学习算法来分析或解释放射图像。一些技术允许将图像从医院传输到软件平台,该平台托管在 NHS 认可的安全数据中心。该软件使用专有算法分析胸部 DICOM(医学数字成像和通信)图像。图像分析可以直接发送回医院,以便使用医院系统(例如图片存档和通信系统 (PACS))和一些使用 DICOM 和 HL7 等协议的放射信息系统进行查看。一些技术还可能允许使用 Web 界面上传和查看图像和分析。
文本到图像生成模型正变得越来越流行,公众可以访问。由于这些模型看到大规模的部署,因此有必要深入研究其安全性和公平性,以免消散和永久存在任何形式的偏见。然而,存在的工作重点是检测封闭的偏见集,定义了先验的偏见,将研究限制为众所周知的概念。在本文中,我们解决了出现OpenBias的文本到图像生成模型中开放式偏见检测的挑战,该模型是一条新管道,该管道可识别和量化双质量的严重性,而无需访问任何预编译的集合。OpenBias有三个阶段。在第一阶段,我们利用大型语言模型(LLM)提出偏见,给定一组字幕。其次,目标生成模型使用相同的字幕绘制图像。最后,一个视觉问题回答模型认识到了先前提出的偏见的存在和范围。我们研究了稳定扩散1.5、2和XL强调新偏见的稳定扩散,从未研究过。通过定量实验,我们证明了OpenBias与当前的封闭式偏见检测方法和人类判断一致。
摘要 我们计划使用 NIRSpec 积分场单元 (IFU) 拍摄真正的太阳系气态巨行星类似物、标志性的 eps Eridani b 的第一张图像和光谱。Eps Eri b 是一颗已知的径向速度行星,围绕附近的类太阳恒星 (K2V) 运行,轨道距离约为 3.5 au(周期为 7.3 年),其动态质量介于土星和木星之间(0.57-0.78 MJup),这意味着它可以直接与太阳系气态巨行星进行比较。这颗青少年(4 亿至 8 亿年)亚木星是独一无二的,因为就半长轴、质量和年龄而言,它位于凌日和直接成像的系外行星之间。到目前为止,该参数空间区域无法进行光谱表征。此外,第 3 周期是观察该行星的最佳时间,因为它处于最远的投影分离状态,这种情况每 4 年才发生一次。我们将针对这颗冷亚木星的峰值通量(~140-215 K)获得 3-5 微米的 R~2,700 光谱,并首次测量其亮度、有效温度和成分(C/H、O/H、N/S)。由于第 1 周期数据证明 NIRSpec IFU 可以达到优于 JWST 日冕仪的对比度(35 分钟内 1'' 处 1e-6),因此可以直接探测到 eps Eri b。观察描述我们建议使用 NIRSpec 积分场单元(IFU;G395H/F290LP;2.87 - 5.27 微米)拍摄 eps Eridani b 的第一张图像和高分辨率光谱(R=2,700)。
核磁共振 (NMR) 是对原子核磁特性的光谱研究。原子核的质子和中子具有与其核自旋和电荷分布相关的磁场。共振是一种能量耦合,当单个原子核被置于强外部磁场中时,它会选择性地吸收并随后释放这些原子核及其周围环境所特有的能量。自 20 世纪 40 年代以来,NMR 信号的检测和分析已作为化学和生物化学研究中的分析工具得到了广泛的研究。NMR 不是一种成像技术,而是一种提供有关放置在小体积、高场强磁性装置中的样本的光谱数据的方法。在 20 世纪 70 年代初,人们意识到磁场梯度可用于定位 NMR 信号并生成显示质子磁特性的图像,反映临床相关信息,再加上技术进步和“体型”磁体的发展。随着 20 世纪 80 年代中期临床成像应用的增多,“核”含义被抛弃,磁共振成像 (MRI) 及其大量相关缩略词开始被医学界普遍接受。随着磁场强度更高的磁铁以及解剖、生理和光谱研究的改进,MR 应用的临床意义不断扩大。对软组织差异的高对比敏感度以及使用非电离辐射对患者的固有安全性是 MRI 取代许多 CT 和投影射线照相方法的主要原因。随着图像质量、采集方法和设备设计的不断改进,MRI 通常是检查患者解剖和生理特性的首选方式。但它也存在缺点,包括设备和选址成本高、扫描采集复杂、成像时间相对较长、图像伪影明显、患者幽闭恐惧症以及 MR 安全问题。本章回顾了磁学的基本特性、共振概念、组织磁化和弛豫事件、图像对比度的生成以及获取图像数据的基本方法。第 13 章讨论了高级脉冲序列、图像特征/伪影的说明、MR 波谱、MR 安全性和生物效应。
本文提出了一种基于量子计算的算法来解决单图像超分辨率(SISR)问题。SISR 的一个著名经典方法依赖于成熟的逐块稀疏建模。然而,该领域的现状是深度神经网络(DNN)已表现出远超传统方法的效果。不过,量子计算有望很快在机器学习问题中变得越来越突出。因此,在本文中,我们有幸对将量子计算算法应用于 SISR 这一重要的图像增强问题进行了早期探索。在量子计算的两种范式,即通用门量子计算和绝热量子计算(AQC)中,后者已成功应用于实际的计算机视觉问题,其中量子并行性已被利用来有效地解决组合优化问题。本研究展示了如何将量子 SISR 公式化为稀疏编码优化问题,该问题使用通过 D-Wave Leap 平台访问的量子退火器进行求解。所提出的基于 AQC 的算法被证明可以实现比传统模拟更快的速度,同时保持相当的 SISR 精度 1 。
神经科学的最新进展强调了多模式医学数据在研究某些病理和了解人类认知方面的有效性。但是,获得一组不同的模态的完整集受到各种因素的限制,例如长期获取时间,高检查成本和伪影抑制。此外,神经影像数据的复杂性,高维度和异源性仍然是有效地利用现有随机扫描的另一个关键挑战,因为不同机器通常对相同方式的数据进行了不同的测量。显然需要超越传统成像依赖性过程,并从源中综合解剖学特定的目标模式数据。在本文中,我们建议学习使用新型CSCℓ4NET跨内部和模式内变化的专用特征。通过特征图和多元典范适应性中的模态数据的初始统一,CSCℓ4净4净促进了特征级别的相互转换。正定的riemannian歧管 - 惩罚数据限制项进一步使CSCℓ4NET可以根据变换的特征重新构建缺失测量值。最后,最大化ℓ4 -norm沸腾到计算上有效的优化问题。具有较大的实验可以验证我们的CSCℓ4NET的能力和鲁棒性与Multiple数据集中的最新方法相比。
Turner 等人的欧拉曲线变换 (ECT) 是嵌入单纯复形的完全不变量,易于进行统计分析。我们对 ECT 进行了推广,以提供同样方便的表示形式,用于加权单纯复形,例如在某些医学成像应用中自然出现的对象。我们利用 Ghrist 等人关于欧拉积分的工作来证明这个不变量——称为加权欧拉曲线变换 (WECT)——也是完整的。我们解释了如何将灰度图像中分割的感兴趣区域转换为加权单纯复形,然后转换为 WECT 表示。该 WECT 表示用于研究多形性胶质母细胞瘤脑肿瘤形状和纹理数据。我们表明,WECT 表示可根据定性形状和纹理特征有效地对肿瘤进行聚类,并且这种聚类与患者生存时间相关。
