生日 — 坚持不懈终有回报。一旦你有了动力,看到结果只是时间问题。射手座(11 月 23 日至 12 月 21 日)— 你的才华和努力将得到认可。回报将激发你的斗志,推动你争取更高的荣誉。摩羯座(12 月 22 日至 1 月 19 日)— 你有一条清晰的道路可以将你的梦想变成现实。不要害怕改变;采取行动,让它发挥作用。水瓶座(1 月 20 日至 2 月 19 日)— 不要分享个人信息、秘密或任何可能损害你声誉的事情。双鱼座(2 月 20 日至 3 月 20 日)——谨慎选择与谁交往。有人会利用你的慷慨和善良来利用你。白羊座(3 月 21 日至 4 月 19 日)——承担额外的工作,赚取额外的现金,以帮助支付年终费用。你的热情会给你的老板或新客户留下深刻印象,也会带来丰厚的回报。金牛座(4 月 20 日至 5 月 20 日)—— 相信你有能力完成任务。如果你想改变,那就成为实现它的人。全速前进!双子座(5 月 21 日至 6 月 20 日)——观察别人的行为和言论,但不要发表你的想法或意见。你应该保密,直到你弄清楚其他人的计划。巨蟹座(6 月 21 日至 7 月 22 日)——努力为你的社区做出贡献。以创新的方式应对挑战,并发挥领导作用。狮子座(7 月 23 日至 8 月 22 日)——投入更多有意义的思考和行动,思考如何取悦你所爱的人,而不会负债累累。处女座(8 月 23 日至 9 月 22 日)——你的知识和经验将得到回报。每个人都想和你一起工作,帮助你实现目标。不要犹豫,走进聚光灯下。天秤座(9 月 23 日至 10 月 23 日)——让生活简单起来,确保你的银行账户盈余,不要泄露你的秘密。不要在压力下屈服,也不要屈服于要求或某人的操纵策略。天蝎座(10 月 24 日至 11 月 22 日)——如果你把工作和娱乐结合起来,就会有令人兴奋的发现。参与活动,向你的同伴展示你的活力和惊喜。
通过利用量化误差和加性噪声之间的相似性,可以通过使用扩散模型“ denoise”量化引入的伪影来构建基于扩散的图像压缩编解码器。但是,我们确定了这种方法中的三个差距,从而导致量化的数据排除在扩散模型的分布之外:噪声水平,噪声类型和由离散化引起的差距的差距。为了解决这些问题,我们提出了一个新型的基于量化的正向扩散过程,该过程是理论上建立的,并桥接了上述三个差距。这是通过经过精心量身定制的量化时间表以及对均匀噪声训练的扩散模型来实现的。与以前的工作相比,我们提出的架构也会产生一贯的现实和详细的结果,即使是在极低的比特率下,同时保持对原始图像的忠诚度。
由于可能存在数据偏差和预测方差,图像去噪是一项具有挑战性的任务。现有方法通常计算成本高。在这项工作中,我们提出了一种无监督图像去噪器,称为自适应双自注意网络(IDEA-Net),以应对这些挑战。IDEA-Net 受益于生成学习的图像双自注意区域,其中强制执行去噪过程。此外,IDEA-Net 不仅对可能的数据偏差具有鲁棒性,而且还通过仅在单个噪声图像上应用具有泊松丢失操作的简化编码器-解码器来帮助减少预测方差。与其他基于单图像的学习和非学习图像去噪器相比,所提出的 IDEA-Net 在四个基准数据集上表现出色。 IDEA-Net 还展示了在低光和嘈杂场景中去除真实世界噪声的适当选择,这反过来有助于更准确地检测暗脸。源代码可在 https://github.com/zhemingzuo/IDEA-Net 获得。
参考图像分割(RIS)的目的是通过相应的静脉语言表达式精确地分段图像中的对象,但依赖于成本密集的掩码注释。弱监督的RIS因此从图像文本对学习到像素级语义,这是用于分割细粒面罩的挑战。自然而然地提高了分割精度,是用图像分割模型SAM赋予弱监督的RI。尽管如此,我们观察到,简单地整合SAM会产生有限的收益,甚至由于不可避免的噪声而导致性能回归,而过度关注对象部分的挑战和挑战。在本文中,我们提出了一个创新的框架,即P PPT(PPT),与拟议的多源课程学习策略合并,以解决这些挑战。具体来说,PPT的核心是一个点发生器,它不仅可以利用Clip的文本图像对准能力和SAM强大的掩膜生成能力,而且还产生了负点提示,以固有,有效地解决嘈杂和过度的焦点问题。在适当的情况下,我们引入了一种以对象为中心图像的课程学习策略,以帮助PPT逐渐从更简单但精确的语义一致性中学习到更复杂的RIS。实验表明,我们的PPT在MIOU上显着胜过弱监督的技术,分别为11.34%,14.14%和6.97%,分别为6.97%。
计算机视觉的抽象工业应用有时需要检测数字图像中小组像素的非典型物体。这些对象很难单一单,因为它们很小并且随机分布。在这项工作中,我们使用新型基于ANT系统的聚类算法(ASCA)提出了一种图像分割方法。ASCA对蚂蚁的觅食行为进行建模,蚂蚁的觅食行为在搜索高数据密度区域的数据空间中移动,并在其路径上留下信息素跟踪。信息素图用于识别簇的确切数量,并使用信息素gra-denient将像素分配给这些簇。我们将ASCA应用于数字乳房X线照片中的微钙化,并将其与最先进的聚类算法进行比较,例如1D自组织图,k -meanss,模糊C-Meanss和可能的模糊模糊C-Meanss。ASCA的主要优点是,群集的数量不需要先验。实验结果表明,在检测非典型数据的小簇时,ASCA比其他算法更有效。
Deeptrees项目提供了用于培训,微调和部署深度学习模型的工具,以使用德国的数字矫正图计划(DOP)以20 cm的分辨率从德国的数字矫正图计划(DOP)中使用公共访问的图像进行诸如Tree Crown分割,树状特征检测和树种分类。这些DOP图像是根据“ Amtliches popographis-kartographissches Informationssystems”(AKTIS)指南进行标准化的,以确保其长期使用的可靠性和一致性[2]。利用深层python软件包,我们成功地绘制了萨克森州(137,293,260棵树)和萨克森 - 安哈尔特(81,449,641棵树)的218,742,901棵树,展示了该工具在森林,Urban和乡村环境中的可伸缩性(图1)。这些数据集为市政当局和机构提供了宝贵的见解,以管理街道树木,监测城市绿化和评估森林健康,从而实现更明智的决策和可持续的管理实践。
与从 LiDAR 数据和多视图影像重建相比,倾斜影像重建是大规模城市建模的重要研究问题和经济解决方案。然而,建筑物足迹和立面的部分不可见性、严重的阴影效应以及大范围区域内建筑物高度的极端变化等若干挑战将现有的基于单目影像的建筑物重建研究限制在某些应用场景中,即从近地面影像建模简单的低层建筑物。在本研究中,我们提出了一种新颖的单目遥感影像 3D 建筑物重建方法,解决了上述困难,从而为更复杂的场景提供了一种有吸引力的解决方案。我们设计了一个多任务建筑物重建网络 MTBR-Net,通过四个语义相关任务和三个偏移相关任务来学习倾斜影像的几何属性、3D 建筑物模型的关键组件及其关系。网络输出通过基于先验知识的 3D 模型优化方法进一步集成,以生成最终的 3D 建筑模型。在公共 3D 重建数据集和新发布的数据集上的结果表明,与目前最先进的方法相比,我们的方法将高度估计性能提高了 40% 以上,将分割 F1 分数提高了 2% - 4%。
图像去雾是一种减少图像中雾霾、灰尘或雾气影响的方法,以便清晰地查看观察到的场景。文献中存在大量传统和基于机器学习的方法。然而,这些方法大多考虑可见光光谱中的彩色图像。显然,由于热红外光谱的波长较长,受雾霾的影响要小得多。但远距离观测期间的大气扰动也会导致热红外 (TIR) 光谱中的图像质量下降。在本文中,我们提出了一种为 TIR 图像生成合成雾的方法。然后,我们分析了现有的盲图像质量评估措施雾感知密度评估器 (FADE) 对 TIR 光谱的适用性。我们进一步全面概述了当前图像去雾的最新技术,并通过经验表明,许多最初为可见光图像设计的方法在应用于 TIR 光谱时表现得出奇的好。这在最近发布的 M3FD 数据集上进行的实验中得到了证实。
对于医学图像分割,想象一下如果一个模型仅使用源域中的 MRI 图像进行训练,那么它在目标域中直接分割 CT 图像的性能如何?这种设置,即具有临床潜力的通用跨模态分割,比其他相关设置(例如域自适应)更具挑战性。为了实现这一目标,我们在本文中提出了一种新颖的双重规范化模型,该模型在通用分割过程中利用增强的源相似和源不相似图像。具体而言,给定一个源域,旨在模拟看不见的目标域中可能的外观变化,我们首先利用非线性变换来增强源相似和源不相似图像。然后,为了充分利用这两种类型的增强,我们提出的基于双重规范化的模型采用共享主干但独立的批量规范化层进行单独规范化。随后,我们提出了一种基于风格的选择方案,在测试阶段自动选择合适的路径。在三个公开数据集(即 BraTS、跨模态心脏和腹部多器官数据集)上进行的大量实验表明,我们的方法优于其他最先进的领域泛化方法。代码可在 https://github.com/zzzqzhou/Dual-Normalization 获得。
提供给文本对图像差异模型的提示的质量决定了生成的内容对用户意图的忠诚程度,通常需要“及时工程”。要通过及时的工程来利用目标图像的视觉概念,当前方法在很大程度上通过优化然后将它们映射到伪tokens来依赖嵌入反演。然而,使用这种高维矢量表示是具有挑战性的,因为它们缺乏语义和可解释性,并且只允许使用它们时模拟矢量操作。相反,这项工作着重于反转扩散模型,以直接获得可靠的语言提示。这样做的挑战在于,由此产生的优化问题从根本上是离散的,提示的空间呈较大。这使得使用标准优化技术,例如随机梯度下降,困难。为此,我们利用延迟的投影方案来访问代表模型中词汇空间的提示。此外,我们利用了扩散过程的时间段与图像中不同级别的细节相差的发现。后来的,嘈杂的,前传扩散过程的时间段对应于语义信息,因此,此范围内的迅速反转提供了代表图像语义的令牌。我们表明,我们的方法可以确定目标图像的语义可解释和有意义的提示,该提示可用于合成具有相似内容的多样化图像。我们说明了优化提示在进化图像生成和概念删除中的应用。