联合学习允许分布式的医疗机构可以协作学习具有隐私保护的共享预测模型。在临床部署时,接受联邦学习的模型仍会在联邦外面完全看不见的霍斯群岛上使用时仍会遭受性能下降。在本文中,我们指出并解决了联合域的生成(FedDG)的新型问题设置,该设置旨在从多个分布式源域中学习联合模型,以便它可以直接概括为看不见的目标域。我们提出了一种新颖的方法,在持续频率空间(ELCF)中称为情节学习,通过启动每个客户端在数据分散率的挑战性约束下利用多源数据分布来利用多源数据分布。我们的方法通过有效的连续频率空间插值机制以隐私保护方式传输客户之间的分布信息。通过转移的多源分布,我们进一步仔细设计了面向边界的情节学习范式,以将本地学习暴露于域分布变化,尤其是在医学图像分割场景中尤其满足模型概括的挑战。在两个医学图像分割任务上,我们的方法的有效性优于最先进的表现和深入消融实验。可以在https://github.com/liuquande/feddg-elcfs上使用代码。
多发性硬化症(MS)是中枢神经系统(CNS)的自身免疫性疾病,没有明确的触发因素。然而,流行病学研究表明,遗传性易感性个体中的Epstein-Barr病毒(EBV)感染(EBV)和低维生素D(VIT D)水平等环境因素是重要的危险因素。一个主要建议是,EBV通过分子模拟物等机制触发MS,在该机制中激活的自动反应性B和T淋巴细胞错误地靶向自我抗原。与其他危险因素,低血清VIT D水平,VIT D受体的遗传多态性以及北半球国家的MS发病率更高,这表明VIT D在MS病理学中也起着作用。维生素D,以其神经保护作用和免疫调节作用而闻名,有助于维持促炎和抗炎性免疫细胞之间的平衡。研究和正在进行的临床试验表明,次动物症D与MS的风险增加有关,而VIT D补充剂可以帮助降低疾病的严重程度。此外,次动物症D也与免疫系统失调和增加MS的风险增加有关。本综述探讨了这三个良好认可的危险因素如何在MS的发病机理中相互作用 - EBV感染,次动物症D和失调的免疫系统 - 相互作用。了解这些相互作用及其后果可以为治疗这种毁灭性疾病的新型治疗方法提供新的见解。
近年来非酒精性脂肪肝疾病(NAFLD)病例的迅速增加引起了人们的重大关注。准确地识别组织的改变对NAFLD的诊断至关重要,但是该任务在病理图像分析中带来了挑战,特别是与小规模的数据集有关。最近,从完整的微调转变为改编视觉模型的提示的范式转变为小规模数据分析提供了新的视角。然而,基于任务不足提示的现有提示方法主要是为了通用图像识别而开发的,该方法在为复杂病理学图像提供指导的指示方面缺乏。在本文中,我们提出了基于定量属性的提示(QAP),这是一种专门用于肝脏病理学分析的新提示方法。QAP基于两个定量属性,即基于K功能的空间属性和基于直方图的形态学属性,旨在对组织状态进行标准评估。此外,condi-
近年来的抽象背景,三维(3D)球体模型在科学研究中变得越来越流行,因为它们提供了一种与生理相关的微环境,可以模仿体内条件。与传统的二维细胞培养方法相比,它可以更好地了解3D球体测定法具有优势,因为它可以更好地了解细胞行为,药物功效和毒性。但是,使用3D球体测定法受到了用于球体图像分析的自动化和用户友好的工具的阻碍,这会对这些测定的可重复性和吞吐量产生不利影响。为解决这些问题的结果,我们开发了一种完全自动化的,基于Web的工具,称为Spheroscan,该工具使用了带有卷积神经网络(R-CNN)的名为“掩码区域”的深度学习框架进行图像检测和细分。为了开发一个可以从一系列实验条件中应用于球体图像的深度学习模型,我们使用使用Incucyte Live细胞分析系统和常规显微镜捕获的球体图像训练了该模型。使用验证和测试数据集对经过培训模型的性能评估显示出令人鼓舞的结果。结论Spheroscan允许轻松分析大量图像,并提供交互式可视化功能,以更深入地了解数据。我们的工具代表了球体图像分析的重大进步,并将促进科学研究中3D球体模型的广泛采用。可在https://github.com/funtionalurosology/spheroscan上获得有关Spheroscan的源代码和详细的Spheroscan教程。
摘要。视觉语言预处理(VLP)模型已在众多计算机视觉应用中被证明。在本文中,我们基于图像扫描和电子健康记录中的文本介绍,为医疗领域开发VLP模型,以促进计算机辅助诊断(CAD)。为了实现这一目标,我们介绍了MedBlip,这是一种轻巧的CAD系统,该系统启动了从架子冻结的预训练的图像编码器和大型语言模型中启动VLP。我们合并了一个MEDQFormer模块,以弥合3D医学图像和2D预训练的图像编码器和语言模型之间的差距。为了评估MEDBLIP的有效性,我们从五个公共阿尔茨海默氏病(AD)数据集中收集了30,000多个图像量:ADNI,NACC,OASIS,OASIS,AIBL和MIRIAD。在这个大规模的广告集中,我们的模型在健康,轻度认知障碍(MCI)和AD主题的零摄像分类中表现出了令人印象深刻的表现,并且还显示了其在M3D-VQA-AD数据集中的医学视觉问题An-Swering(VQA)中的能力。代码和预训练模型可在https://github.com/qybc/medblip上找到。
Deeptrees项目提供了用于培训,微调和部署深度学习模型的工具,以使用德国的数字矫正图计划(DOP)以20 cm的分辨率从德国的数字矫正图计划(DOP)中使用公共访问的图像进行诸如Tree Crown分割,树状特征检测和树种分类。这些DOP图像是根据“ Amtliches popographis-kartographissches Informationssystems”(AKTIS)指南进行标准化的,以确保其长期使用的可靠性和一致性[2]。利用深层python软件包,我们成功地绘制了萨克森州(137,293,260棵树)和萨克森 - 安哈尔特(81,449,641棵树)的218,742,901棵树,展示了该工具在森林,Urban和乡村环境中的可伸缩性(图1)。这些数据集为市政当局和机构提供了宝贵的见解,以管理街道树木,监测城市绿化和评估森林健康,从而实现更明智的决策和可持续的管理实践。
