摘要 随着三维集成电路(3D-IC)堆叠的增加,由于不对称马鞍形翘曲的增加,机械应力问题具有挑战性。通过在晶圆背面形成数十微米的沟槽或进行激光退火处理来减少不对称翘曲的各种方法已被提出,但它们的产量低或缺乏改进价值。在本文中,我们提出了一种通过在晶圆背面直接涂覆来降低取决于翘曲形状的机械应力的新方法。所提出的方法是通过使用喷墨打印对感光聚酰亚胺(PSPI)进行图案化以调整表面特性和台阶,然后沉积具有高压应力的四乙基硅酸酯(TEOS)薄膜来释放翘曲。利用ABAQUS有限元分析软件,测量了裸晶圆在工艺前后沿x轴和y轴方向的不对称弯曲变化。通过实验和仿真,在300mm晶圆上部分沉积10µm厚的TEOS膜时,x-y方向的倾斜度约为230µm。此外,利用该工艺,可以根据TEOS膜厚度和面积的变化来释放局部弯曲(翘曲)。这些结果为解决堆叠工艺引起的异常翘曲提供了有效的指导,可应用于先进封装中的3D集成。关键词 翘曲、马鞍形翘曲、NAND、3D NAND、背面图案化
对于具有各向异性特性的设备,必须使用定向孔的微观图形材料。晶体和多孔金属有机框架(MOF)是理想的材料,因为它们的化学和结构性突变性可以精确调整功能性能,用于从微电子到光子学的应用。在此,设计了一个可模式的莫弗胶:通过在X射线暴露下使用光掩膜,MOFFILM在辐照区域分解,在未暴露的区域中保持完整。MOFFILM同时用作抗药性和功能性多孔材料。虽然对齐的Cu(OH)2纳米质体的异质增长用于沉积定向的Moffimfms,但通过将溴化二羧酸酯配体(BR 2 BDC)整合到基于铜的MOF CU 2 L 2 L 2 L 2 L 2 L 2 L 2 L 2 LABCO(DABCO(DABCO)中,可以实现对辐射的敏感性(dabco = 1 ockco = 1,4-diazabice; BDC/BR 2 BDC)。 用激光辐射时的石版样品充当辐射时的不同光栅,从而确定了扩展的MOF微图案的质量。 此外,定向的MOF模式通过荧光染料功能化。 结果通过旋转激光激发的极化角,显示了MOF中染料的比对。 通过控制对光的功能响应,该MOF模式协议可用于光子设备的光学组件的微分化。虽然对齐的Cu(OH)2纳米质体的异质增长用于沉积定向的Moffimfms,但通过将溴化二羧酸酯配体(BR 2 BDC)整合到基于铜的MOF CU 2 L 2 L 2 L 2 L 2 L 2 L 2 L 2 LABCO(DABCO(DABCO)中,可以实现对辐射的敏感性(dabco = 1 ockco = 1,4-diazabice; BDC/BR 2 BDC)。用激光辐射时的石版样品充当辐射时的不同光栅,从而确定了扩展的MOF微图案的质量。此外,定向的MOF模式通过荧光染料功能化。通过旋转激光激发的极化角,显示了MOF中染料的比对。通过控制对光的功能响应,该MOF模式协议可用于光子设备的光学组件的微分化。
液晶(LC)全息光栅用于多种光学应用,包括安全性,密码学,数据固定,光学过滤器和显示器。1–3通过两种相干激光束的干扰,将全息光栅放入LC,单体和引发剂的混合物中,这些激光束在单体和液晶的混合物中形成了空间调节的折射率变化。文献中已经报道了两种类型的全息图案液晶光栅:传播和反射光栅。在传输光栅中,两个相干激光束在同一样品区域上通过样品传输。对于反射光栅,将两个梁暴露于相反的样品平面,从而形成平行于样品表面的层结构。据报道,分层的液晶光栅是policryps(聚合物液晶聚合物切片)4-7或全息图
摘要。在本文中,研究并制定了基于Al和Cuox的能量纳米级粉末材料的电泳沉积的特征和主要细微差别。我们成功证明了在沉积过程中使用悬架非停车超声混合和水平电极放置的优势。显示了在导电拓扑模式上局部沉积局部沉积的可能性。研究了沉积材料的质量对局部形成的能量材料的波燃烧过程行为的影响。这项研究为多目标优化提供了指导,并增加了局部电泳沉积过程的可重复性。结果表明,可以将Alcuox混合物整合到微能系统中,作为具有出色特异性特征和高燃烧速率的材料。
摘要:液晶 (LC) 微液滴阵列是一种精巧的系统,由于其对表面性质变化的敏感性和强光学活性,具有广泛的应用,例如化学和生物传感。在这项工作中,我们利用自组装单层 (SAM) 对表面进行化学微图案化,并优先选择液晶占据的区域。利用不连续脱湿,将一滴液体拖到图案化表面上,展示了一种新颖、高产的方法,可将液晶限制在化学定义的区域中。通过改变液滴的大小和液晶相,证明了该方法的广泛适用性。虽然液滴的光学纹理由拓扑约束决定,但额外的 SAM 界面显示出锁定非均匀排列。表面效应高度依赖于尺寸,其中较大的液滴在向列相液滴中表现出不对称的指向矢结构,而在胆甾相液滴中表现出高度打结的结构。
由 HBr/O 2 组成的等离子体通常用于硅蚀刻工艺,如栅极蚀刻工艺或浅沟槽隔离蚀刻,由于人们对此类化学反应中的硅蚀刻相当了解,因此它成为研究等离子体脉冲对气相和等离子体-表面相互作用的影响的最佳选择。目标是了解连续等离子体和脉冲等离子体之间的根本区别,以及等离子体产生的变化如何影响最终的图案转移。在论文 I 中,我们展示了等离子体脉冲对离子通量和离子能量的强大影响。1 结果显示,占空比 (dc) 而不是脉冲频率对这些参数有显著影响。在本文中,我们重点研究等离子体脉冲对 HBr/O 2 等离子体中的蚀刻机制和图案转移的影响。先前的实验已经证明脉冲等离子体中等离子体引起的损伤有所减少,2 – 4 通常通过使用扫描电子显微镜 (SEM) 成像、椭圆偏振测量和 X 射线光电子能谱 (XPS) 对侧壁钝化层 (SPL) 进行形貌分析。许多作者已经研究了 HBr/O 2 等离子体对硅和 SiO 2 的蚀刻机理。5 – 13 下面总结了 Si 和 SiO 2 蚀刻的基本机理,其中考虑了原料气中极小比例的氧气。含溴、氢和(较少量)氧的离子撞击硅表面、分解、破坏键并形成富含卤素的非晶层,也称为反应蚀刻层 (REL),其中含有 H、Br 和一些 O 原子。非晶层的厚度和成分会根据离子能量、压力和原料气流量而变化。由于氢原子比其他粒子小得多,它们可以更深地渗透到硅层中,然后硅原子可以因碰撞而解吸,或可以融入挥发性物质,如 SiBr 4。含氢分子如 SiH 2 Br 2 的挥发性更强,13 但硅蚀刻并不
1 过程与材料科学实验室(LSPM-CNRS UPR-3407),巴黎北索邦大学(USPN),93430 Villetaneuse,法国; anhnn@hus.edu.vn (信息来源); thanhhuyen.vltn@gmail.com(HTTN); valerie.bockelee@lspm.cnrs.fr (VB); frederic.schoenstein@univ-paris13.fr (FS) 2 越南科学技术院材料科学研究所,越南河内 Cau Giay 区 3 激光物理实验室(LPL-CNRS UMR-7538),巴黎北索邦大学(USPN),93430 Villetaneuse,法国; jeanne.solar d@univ-paris13.fr 4 Jean Lamour 研究所,UMR 7198 CNRS - 洛林大学 Artem 校区,54000 Nancy,法国 5 R&I 二氧化硅合成工程师,SOLVAY,92400 Courbevoie,法国; ch.benosman@gmail.com 6 巴塞罗那材料科学研究所(ICMAB-CSIC),UAB校区,08193 Bellaterra,西班牙; agomez@icmab.es(AG); msimon@icmab.es (MS-S.); anaesther@icmab.es (AEC) 7 PIMM、法国工艺学院、CNRS、Cnam、HESAM 大学,151 Boulevard de l'Hopital,75013 巴黎,法国; Sylvie.GIRAUL T@ensam.eu * 通信地址:silvana.mer cone@univ-paris13.fr
1 巴黎北索邦大学 (USPN) 材料科学实验室 (LSPM-CNRS UPR-3407), 93430 Villetaneuse, France; anhnn@hus.edu.vn (ANN); thanhhuyen.vltn@gmail.com (HTTN); valerie.bockelee@lspm.cnrs.fr (VB); frederic.schoenstein@univ-paris13.fr (FS) 2 越南科学技术研究院材料科学研究所,Cau Giay Distr.,河内,越南 3 激光物理实验室 (LPL-CNRS UMR-7538),巴黎北索邦大学 (USPN),93430 Villetaneuse,法国; jeanne.solard@univ-paris13.fr 4 Jean Lamour 研究所,UMR 7198 CNRS - 洛林大学 Artem 校区,54000 Nancy,法国 5 R&I 二氧化硅合成工程师,SOLVAY,92400 Courbevoie,法国; ch.benosman@gmail.com 6 巴塞罗那材料科学研究所 (ICMAB-CSIC),UAB 校区,08193 Bellaterra,西班牙; agomez@icmab.es (AG); msimon@icmab.es (MS-S.); anaesther@icmab.es (AEC) 7 PIMM,艺术与工艺学院,CNRS,Cnam,HESAM 大学,151 Boulevard de l'Hopital,75013 巴黎,法国; Sylvie.GIRAULT@ensam.eu * 通讯地址:silvana.mercone@univ-paris13.fr
10 2020 IEEE 第 70 届电子元件和技术会议 │ 2020 年 6 月 3 日 – 6 月 30 日
脑干中的逆转录核(RTN)神经元调节对高碳酸高的通气反应。目前尚不清楚Phox2b-多酰氨酸重复突变(PHOX2B -PARMS)如何改变Phox2b和扰动RTN神经元的形成的功能。在这里,我们用人类多能干细胞的RTN样神经元产生了人类脑干器官(HBSO)。单细胞转录组学表明,phox2b+7ala parm的表达改变了后脑神经元的分化轨迹,并阻碍了HBSOS中RTN样神经元的前瞻性。使用无引导的大脑器官(HCO),PHOX2B+ 7ALA PARM中断了刺猬途径和HOX基因失调的Phox2b+神经元的模式。通过互补使用HBSO和HCO与患者和两个突变体在PHOX2B中携带不同多丙氨酸重复的多能干细胞系,我们进一步定义了多苯胺反复的长度与RTN呼吸中心的畸形与RTN呼吸畸形的长度与RTN的畸形与毒素毒素的疾病型模型的潜在模型,并展示了phox2-Persias的潜在模型,该模型构成了phox2b-Parms的强度,该模型繁多了。