通过腔量子电动力学增强单光子源发射是实现许多量子光学技术中适用发射器的关键。在这项工作中,我们提出了一种灵活方便的腔体制造工艺,该工艺将 SU-8 微带确定性地写入光子晶体波导,其中 InGaAs/GaAs 量子点作为发射器。条带腔在具有选定发射波长的量子点位置处进行激光图案化。进行了微光致发光研究,结果表明,在与单个量子点弱耦合的情况下,发射强度增强了 2.1 倍,时间分辨光致发光进一步显示 Purcell 增强因子为 2.16。因此,该制造工艺被证实是一种将确定性腔耦合引入选定量子点的可靠方法。
摘要:一种前微型图案的渗透过程,用于制造Ti/al/ti/ti/tin ohmic接触到超薄式级别(UTB)Algan/gan异质结构,其欧姆接触电阻率明显降低了0.56ω·Mm的欧欧米触点电阻率为0.56ω·Mm,在同步型柔和的550°MM处于550°C c。板电阻随着电源定律的温度而增加,指数为+2.58,而特定的接触电阻率随温度而降低。接触机制可以通过热场射击(TFE)很好地描述。提取的Schottky屏障高度和电子浓度为0.31 eV和5.52×10 18 cm -3,这表明欧姆金属与UTB-ALGAN以及GAN缓冲液之间的亲密接触。尽管需要深入研究,但揭示了欧姆的透射长度与微图案大小之间的良好相关性。使用拟议的无AU欧姆式融合技术制造了初步的CMOS-PROCOSS-PROCESS-COMPAT-IS-INBLE-METAL-MUNS-DEMENDORATOR-极性高动力晶体管(MIS-HEMT)。
蓝相(BPS)是手性液晶,具有拓扑缺陷的常规晶格。通过分子自组装,BPS独特的软性对称性提供了许多与常规液晶不同的优秀特性。,已经开发出化学图案的表面,以将BP的自组装引导为具有所需晶格方向的完美单晶,从而进一步受益于光子学和智能电子光学设备的设计。然而,BP的相关长度(定义为保持相同BP时间端方向的距离,这是一个必不可少的设计参数)迄今仍未透露。在这里,纳米级化学模式设计的替代平面和同型锚固条纹的设计允许系统地研究沿不同动力学途径的图案化区域以外的BP的生长,以及相关长度的时间演化。对相关长度的新理解可用于指导BPS宏观的单晶的合理设计,该设计依赖于减少的图案表面,这为基于BPLC的新功能和开发提供了令人兴奋的材料,以将基于BPLC的功能和开发用于高级光学设备或软材料设计或软材料设计。
第一步 - 模式 - 通常是最困难的。为了使沙子铸造起来,模式必须是完美的。只是一个简单的折痕或错误的地方可以撕裂重压的砂霉菌,模式用于创建和破坏它。或,在铸造后花费的时间将增加以达到所需的最终形状 - 浪费时间和材料。在使用3D打印之前,图案需要极端的交货时间,而经验丰富的工匠模式制造商则努力从手工形成设计。“传统上,将手动路由器,车床和磨坊制成的木制形状混合在一起。模式制作是一个非常高的技能过程,”布鲁克曼说。随着模式制造商变得越来越稀有和昂贵,肯尼迪阀门将流程外包起来更加有意义 - 消除招聘,工资单和设备复杂性的每零件的交易时间和成本更高。
摘要:多功能玻璃因其出色的机械、光学、热学和化学性能组合而在许多成熟和新兴行业中很常见,例如微电子、光伏、光学元件和生物医学设备。通过纳米/微图案化进行表面功能化可以进一步增强玻璃的表面特性,将其适用性扩展到新的领域。尽管激光结构化方法已成功应用于许多吸收材料,但透明材料在可见激光辐射下的可加工性尚未得到深入研究,尤其是对于生产小于 10 µ m 的结构。在这里,基于干涉的光学装置用于通过可见光谱中 ps 脉冲激光辐射的非线性吸收直接对钠石灰基板进行图案化。制作的线状和点状图案具有 2.3 至 9.0 µ m 之间的空间周期和高达 0.29 的纵横比。此外,在这些微结构中可以看到特征尺寸约为 300 nm 的激光诱导周期性表面结构 (LIPSS)。纹理化表面显示出显著改变的特性。也就是说,经过处理的表面具有增强的亲水行为,在某些情况下甚至达到超亲水状态。此外,微图案充当浮雕衍射光栅,将入射光分成衍射模式。优化了工艺参数,以产生具有超亲水特性和衍射效率超过 30% 的高质量纹理。
摘要。在本文中,研究并制定了基于Al和Cuox的能量纳米级粉末材料的电泳沉积的特征和主要细微差别。我们成功证明了在沉积过程中使用悬架非停车超声混合和水平电极放置的优势。显示了在导电拓扑模式上局部沉积局部沉积的可能性。研究了沉积材料的质量对局部形成的能量材料的波燃烧过程行为的影响。这项研究为多目标优化提供了指导,并增加了局部电泳沉积过程的可重复性。结果表明,可以将Alcuox混合物整合到微能系统中,作为具有出色特异性特征和高燃烧速率的材料。
几年前,DSA 被提议作为一种有前途的互补图案化选择。DSA 基于一类称为嵌段共聚物 (BCP) 的分子的自组装特性。在适当的情况下,这些材料在涂覆到晶圆上时会发生微相分离。这会产生具有 5-30 纳米特征的规则纳米尺寸图案。可以通过调整聚合物的成分及其尺寸来设计图案。可以使用线/空间或孔的预图案进一步引导(定向)该组装 - 这两种结构是半导体行业感兴趣的。最终图案的间距将比导向模板小得多。因此,DSA 是一种非传统的自下而上的技术,可以提高图案的密度和分辨率。
独特功能 – 高耐湿蚀刻和干蚀刻性 – 光刻胶图案具有良好的热稳定性 – 可调图案轮廓:垂直至底切 – 水性碱性显影 – 易于去除 – 提供多种粘度的光刻胶
生物污染。[1]世界卫生组织(WHO)的当前估计表明,如果目前的趋势持续下去,到2050年,由抗多药物的细菌造成的死亡人数可能每年增加到一千万。[2]通过使用积极的抗菌材料(如铜(CU)和非基于phar-Maceutical抗体的抗微生物材料),通过使用积极的抗微生物材料来降低细菌对技术和经常接触的接触表面的生存能力,是降低细菌在技术上和经常接触的接触表面上的生存能力的一种方法。在这里,CU显示出更广泛的应用的巨大潜力,[3,4]回顾了反复重新发现其无菌性抗性的多千年历史[5],而它也作为人类代谢中心过程的痕量元素也参与了痕量元素。[6]相反,Ag在低量的情况下表现出毒性,[7]必须在抗菌施用的情况下精确调整给药,以避免否定性免疫反应。[8]由于释放的铜离子的毒性作用,细菌[9,10]以及病毒[11]在粘附在干燥和潮湿的环境中,粘附在粘液表面时迅速被杀死。Cu的抗菌特性与遭受攻击的微生物释放和吸收的离子量密切相关,在使用CU作为抗菌剂时,必须考虑特定效果:1)
图3暴露于紫外线的皱纹模式的产生/擦除的进化过程。(a – e)分别暴露于0、5、10、15和20分钟的平滑样品时,皱纹模式的生成过程的3D AFM图像。将这些样品加热至120°C。(365 nm UV的光强度约为3.5 mW/cm 2)。(f)暴露于254 nm UV光的皱纹图案的3D AFM图像持续5-7.5分钟(254 nm UV光强度约为3.5 mW/cm 2)。(g)波长(λ,黑线,左垂直轴)和皱纹的振幅(a,红线,右垂直轴)是UV光照射时间的函数。(H)An的二聚化过程的动力学。uv-vis光谱在豌豆/ABA膜中ABA之间的二聚化反应。混合溶液在石英板上旋转,并将样品暴露于365 nm的紫外线,分别为0、2、4、6、8、10、12、14、16分钟。样品被原位测量。