螺旋对象通常在电子或机械微系统中实现,需要精确理解其机械性能。虽然已经深入研究了由圆柱形纤维形成的螺旋,但对螺旋形状的纤维膜的横截面的作用知之甚少。我们通过实验研究了由超薄PMMA丝带制造的微螺旋的力伸展响应。利用新实现的控制螺旋几何形状,量化螺旋螺距的影响,并突出显示了螺旋丝的显着性刺激。两种现象是确定的:从小螺距上的色带扭曲到高螺距上弯曲主导的状态的机械跃迁,以及纯粹的几何影响,特定于螺旋丝带。与先前建立的不可扩展性弹性条的分析模型发现了良好的一致性。
冒烟、起火或设备级故障等事件在日常新闻中屡见不鲜。虽然本文强调,对于制作精良的电池来说,此类危害微乎其微,但重要的是,随着新电池化学成分、几何形状和制造工艺的引入,这些新电池必须至少与当今行业最佳电池一样安全。人们开发了各种方法来减轻这些不可预测事件的风险,即概率和后果。例如,在具有刚性钢壳的圆柱形电池中,外壳的通风设计被集成在一起,以防止内部压力不受限制地积聚,从而降低电池故障的风险。随着技术的强大和日益普及,未来的可充电电池预计将更加智能和安全,以便更好地利用可持续能源。因此,Huang 等人的观点是有根据的,因为传感是电池寿命和可持续性的关键。[1]
摘要 —本文研究了使用电反射法作为一种无损检测技术来监测并联电池组配置中电池极耳焊接的健康状况。开发了由圆柱形锂离子电池组成的 3D 模型,这些电池通过铜焊接在每个末端通过极耳连接。进行了电流表面分布分析,以了解反射信号的传播并选择最佳设置以提高反射灵敏度。然后,创建了几个严重程度和位置各异的缺陷模型来模拟焊接层中材料的逐渐损失。这项工作证明了基于反射仪的系统能够检测并联电池组配置中的焊接退化,据我们所知,这在文献中从未做过。索引词 —电反射法;锂离子电池极耳焊接;缺陷诊断
能量吸收效率是结构提供机械保护能力的关键决定因素,并取决于可以在应力增加到损害要保护系统的水平之前可以吸收的能量量。在这里,我们通过使用自动驾驶实验室(SDL)在广义圆柱形壳上进行> 25,000个物理实验,探索加上制造聚合物结构的能量吸收效率。我们使用人类SDL协作方法,其中从11维参数空间中选择了贝叶斯优化的实验,然后使用贝叶斯优化选择实验,然后自动执行,同时人类团队监视系统以定期修改系统的各个方面。这次人类SDL运动的结果是发现具有75.2%能量吸收效率的结构和一个实验数据库,该结构揭示了设计艰难结构的可转移原理。
在日常新闻中经常看到吸烟,射击或设备级失败等事件。在这里强调,这种危害对于精心制作的细胞而言是最小的,但重要的是,由于引入了新的细胞化学,几何形状和制造工艺,因此这些新电池必须至少与当今行业一样安全。开发了各种方法来减轻这些不可预测的事件的风险,即概率和后果。例如,在具有刚性钢壳的圆柱形细胞中,套管的排气设计被整合为防止内部压力不受限制地积累,从而降低了细胞故障的风险。随着技术的强大性和日益普及,预计未来的可充电电池将变得更聪明,更安全,以便更好地利用可持续的能源。因此,Huang等人的观点。有充分的基础,因为感应是电池寿命和可持续性的关键。[1]
摘要本文量化了限制激光扫描匹配精度的误差源,特别是对于基于体素的方法。LIDAR扫描匹配匹配,用于DEAD RECKONING(也称为LiDAR Odometry)和映射,计算最能使一对点云对齐的旋转和翻译。透视错误是从不同角度观看场景时发生的,从每个角度看,不同的表面变得可见或遮挡。要解释在数据中观察到的透视异常,本文模拟了代表城市景观的两个对象的透视误差:一个圆柱形柱和一个双壁cor ner。对于每个对象,我们提供了基于体素的LIDAR扫描匹配的透视误差的分析模型。然后,我们分析当配备激光雷达的车辆越过这些物体时,透视误差是如何产生的。
电池技术对于全球电气化工作越来越重要。但是,电池对可能引起可靠性或安全性问题的小型制造变化非常敏感。电池质量控制的一项重要技术是计算机断层扫描(CT)扫描,该扫描被广泛用于各种临床和工业应用中的无损3D检查。从历史上看,CT扫描对大批量制造的实用性受到其低吞吐量以及处理其大型文件大小的困难的限制。在这项工作中,我们提供了一千多个CT扫描的数据集,该数据集的商业可用电池。数据集跨越各种化学物质(锂离子和钠离子)以及各种电池形式(圆柱形,小袋和棱镜)。我们总共评估了七种不同的电池类型。可以通过此数据集观察到制造可变性和电池缺陷的存在。该数据集可能对从事电池技术,计算机视觉或两者兼而有之的科学家和工程师感兴趣。
Baird 等人 [9] 的研究表明,热失控过程中形成的气体的主要成分是二氧化碳 (CO2)、一氧化碳 (CO)、氢气 (H2) 和碳氢化合物,如甲烷、乙烷和丙烷。此外,气体的成分会根据 SOC 而发生显著变化。在 40 – 50% SOC 以下(对于圆柱形电池),总气体体积的不到 25% 由可燃气体组成,其余气体为惰性气体 CO2。然而,在 50% SOC 以上,可燃气体的体积急剧增加,特别是 H2 和 CO [9]。Willstrand 等人 [12] 也发现了类似的结果,他们对不同 SOC(25%、50%、75% 和 100%)的方形锂镍锰钴氧化物 (NMC) 电池单元进行了一系列大量测试,采用了不同的热失控触发方法。随着 SOC 的增加,发现 H 2 和 CO 增加,而 CO 2 明显减少。
1.范围 1.1 范围。本规范涵盖用作外部运输容器的新型圆柱形桶(见 6.1)。1.2 分类。桶将按照适用 MS 标准中规定的尺寸和容量提供。2.适用文件。2.1 一般规定。本节列出的文件在本标准的 3 或 4 中指定。本节不包括本标准其他章节中引用的文件或推荐用于补充信息或作为示例的文件。尽管我们已尽一切努力确保此列表的完整性,但文件用户仍需注意,无论是否列出,他们都必须满足本标准第 3 或 4 条中引用的文件的所有指定要求。2.2 政府文件。2.2.1 规范、标准和手册。以下规范、标准和手册构成本文件的一部分,并在此处指定范围内。除非另有说明,否则这些文件的发行版是招标或合同中引用的发行版。
该数据集包括对常用电池(即三星 ICR18650-26J 圆柱形锂离子电池)的电化学阻抗谱测量。使用随机相位多正弦激励信号,在 0.05 Hz 至 10 0 0 Hz 的十四个不同频率下测量电池的复阻抗。对于每个激励频率,电流幅度为 50 mA,导致测量不确定度约为 0.1 m Ω。在四种不同的全新电池的十种不同充电状态下提供六次重复测量。从六个单独的放电循环中获得每个单独电池的重复 EIS 测量结果。所有测量均在将电池放置在 25 ± 1 °C 的温控室中进行。每次测量前都让电池热化。© 2022 作者。由 Elsevier Inc. 出版。这是一篇根据 CC BY 许可协议开放获取的文章 ( http://creativecommons.org/licenses/by/4.0/ )
