物联网 (IOT) 领域中可穿戴设备、智能电子产品和医疗植入物等小型电子设备的市场日益增长,这需要合适的储能设备。锂离子电池 (LIB) 目前是微电子领域的首选电池,因为它们具有较高的重量能量 (W h kg 1 ) 和体积能量 (W hl 1 )。1 然而,传统设计的 LIB(即袋式、棱柱形、圆柱形)难以小型化。另一方面,超级电容器和薄膜电池可以小型化,并且已经用于微电子设备,但却以牺牲能量密度为代价。2 – 5 对于薄膜电池,可以通过实现 3D 结构阴极来提高能量和功率密度。6,7 增材制造微电池是一种很有前途的技术,可以解决与电子设备的集成问题,并且具有
技术说明 风扇箱由一个圆柱形底座组成,叶轮安装在底座内。驱动电机直接用固体隔音材料固定在箱体上。所有用于空气引导的部件均由阻燃聚丙烯制成。下部外壳部分是吸入室,带有三个进气插座,其公称直径为 75 毫米,偏移 90 度。这意味着最多可以将三个吸入点直接连接到风扇上。不使用的插座用盖帽封闭。特殊的轴密封件可防止危险物质的流出。尺寸匹配的减震器和最下层带有封闭盖的孔是标准交付范围的元素。因此,风扇符合 DIN 1946 第 7 节的规定。
收到:2023年6月7日修订:2023年7月18日接受:2023年8月9日发布:2023年8月31日摘要 - 没有锂离子电池,电动汽车就无法运行。但是,对电池寿命的担忧减慢了电动汽车的传播。电池组内的温度对于尽可能长时间保持健康电池至关重要。冷却系统很有帮助,因为它可以防止电池太快死亡。使用有限元分析,已经使用轴向辐射热路线检查了圆柱电池模块的热行为。已经评估了锂离子细胞的热量产生速率和热传输参数。圆柱形锂离子细胞的一个表面在径向或轴向上加热,而其余表面保持在恒定的环境温度。
摘要:本文提出了一种基于双SPP耦合用于亚波长限制的长距离混合波导。混合波导由金属基圆柱形混合波导和银纳米线组成。波导结构中存在两个耦合区,增强了模式耦合。强模式耦合使波导既表现出较小的有效模式面积(0.01),又表现出极长的传输长度(700 μm),波导的品质因数(FOM)可高达4000。此外,波导的横截面积仅为500nm×500nm,允许在亚波长范围内进行光学操作,有助于提高光电器件的小型化。混合波导的优异特性使其在光电集成系统中具有潜在的应用价值。
氢燃料飞机的推进系统结构与传统煤油燃料飞机不同,后者通常将燃料储存在机翼内。通过最大限度地减少热传递和降低油箱表面积与体积比来限制氢气蒸发的需求推动了球形或圆柱形油箱的普及。然而,油箱的定位可能是受空间限制和管理飞机重心需求的影响,这可能导致采用非球形油箱和不同的制造解决方案。油箱可以位于机身内(见图 4),也可以位于悬挂在机翼上的外部吊舱中。因此,以液氢为动力的飞机将拥有“干机翼”,为从根本上改变机翼结构和相关制造工艺创造了机会。还需要制造具有高隔热性能且重量轻的油箱的工艺。
超声波金属点焊是电力电子封装中使用的标准技术,主要用于将电源端子连接器焊接到直接键合铜 (DBC) 基板上。超声波引线键合是一种非常相似的技术,但在工艺、应用和可用设备方面存在显著差异。将焊机的超声波功率与引线键合机的灵活性、精度和工艺控制结合成“智能焊接工艺”的生产设备非常可取。本文比较了这些技术,并介绍了圆柱形电池组的工艺结果。它们突出了智能超声波焊接相对于传统超声波焊接的优势,并证明了智能超声波焊接和引线键合各有优缺点。1 电力电子中的超声波焊接和引线键合
考虑到冷却液的各种流速,配备了圆柱形锂离子电池配备的电池组,用于冷却电池组。部分浸入方法用于减少电池组的总重量,从而增加功率密度。在细胞之间考虑了2 mm的微小间隙为高细胞密度。评估压降和温度分布以找到细胞的最佳条件。评估冷却液的不同流速以及电池的热量产生速率,以达到最低压力下降的温度目标。结果表明,在快速充电(15 kW)期间,考虑到21.5 lpm的冷却液流速,在电池组中,在热点温度为51°C的同时,可以在电池组中达到33°C的平均温度。对于3kW的热量产生速率,可以使用2.15 LPM流速来达到33.8°C的平均温度。
摘要 — 太阳能和风能等可再生能源的间歇性需要与储能装置集成才能实现实际应用。在本研究中,通过实验研究了在存储、充电和放电 (SCD) 条件下与水加热系统集成的翅片圆柱形热能存储 (C-TES) 的热性能增强情况。从理论和实验上详细研究了在 PCM 中添加氧化铜 (CuO) 和氧化铝 (Al 2 O 3 ) 纳米颗粒对热导率、比热以及充电和放电性能速率的影响。实验装置利用石蜡作为 PCM,将其填充在翅片式 C-TES 中进行实验。实验结果表明,与非纳米添加剂 PCM 相比,有积极的改善。该项目的意义和独创性在于评估和识别具有更高改善热性能潜力的优选金属氧化物。