粒子宇宙学的巨大成功是与当前宇宙微波背景(CMB)温度t¼2的大爆炸宇宙学的一致性。7 k,测量值ωb,标准模型(SM)中三个光中微子的存在,以及测得的氦4(4 He)和氘(d)的原始量。这些元素的形成对物理敏感,温度范围为100 keV至〜10 meV,有时从几秒钟到宇宙寿命的几分钟。原始4和D的测量达到了精度百分比,因此我们能够询问有关该时代宇宙特性并获得定量答案的问题。这样一个问题涉及宇宙“黑暗辐射”的性质。现在是通过大爆炸核合成(BBN)和CMB建立的,即早期宇宙能量密度的相当一部分是黑暗辐射的形式。SM将这种辐射解释为SM中微子,它与光子浴中的热接触直至几MeV接近温度。有重要的理由来测试这种解释。例如,在早期与SM的热接触中的其他(近)无质量状态可能会增加此深色辐射。在Lambda冷暗物质中,BBN,CMB和BARYON声学振荡(BAO)的当前95%约束。4(BBN),△n eff≲0。33(CMBþBAO用于λCDMþNEFF),
Born-Oppenheimer近似是多体Schrodinger方程的最重要简化之一。通过忽略核运动,可以在所谓的绝热系统中分离核运动和电子运动。在这种绝热状态下,核运动逐渐发生,使该系统始终是瞬时哈密顿量的能量特征功能。Born-Oppenheimer近似导致电子,旋转和振动自由度的典型范式,可以独立计算。当核运动与电子运动耦合时,出现了Oppenheimer制度的局限性,这就是所谓的振动耦合。这种绝热状态通常发生在光化学或化学反应中,在光化学或化学反应中,核运动变得足够重要,可以发挥振动耦合。对于每个绝热状态,可以绘制势能表面(PE)。如下图所示,不同的激发状态势能表面通常在单个点上退化,该点形成了两个表面相交的锥形形状。这是圆锥形的交叉点,即可能的堕落度的0尺寸空间。圆锥形交叉点是理解状态之间的过渡的关键,尤其是在诸如光化学中发生的激发态动力学中。例如,在荧光中,从单重击状态s 1到单线基态S 0发生过渡,这可能是作为圆锥形相交的接缝的过渡而发生的。
可以在血管造影套件中对大脑进行抽象背景锥束计算机断层扫描(CBCT)成像,以支持各种神经血管手术。仅依靠CBCT脑成像,由于与CT和各种成像伪像,即使在现代CBCT中,由于图像质量的劣质质量,因此仍然缺乏完全的诊断信心。目的是使用新的CBCT协议对图像伪像改进进行详细评估,该协议实现了新型的双轴“蝴蝶”轨迹。方法我们的研究包括47例接受CBCT成像的患者的94次扫描,以评估神经血管手术期间缺血或出血。对每个患者进行了传统的单轴“圆形”和新颖的双轴“蝴蝶”方案(同一患者对照)。每个大脑扫描都分为六个区域,并根据六个源自基于物理和基于患者的来源的伪影中的六个区域。结果双轴轨迹产生的CBCT图像明显少于传统的圆形扫描(全脑平均伪像得分,AS:0.20 vs 0.33),骨束硬化的改善最大(:0.13 vs 0.78)和Cone-Beam beam trifacts(as:0.04 vs 0.04 vs 0.55)。结论CBCT成像方案的最新发展已显着改善了图像伪像,这提高了中风的诊断信心,并支持急性缺血性中风患者的直接到血管造影套件转移方法。