微生物在土壤中起关键作用。众所周知,气候因素,edaphic特性和植物群落影响土壤微生物多样性和社区组成(Delgado-Baquerizo等,2016;Köninger等,2022)。尽管如此,如果我们旨在将土壤微生物特征纳入生态系统模型中,以提高其预测能力,则需要更深入地了解土壤微生物,植被和土壤特性之间的关系(Fry等,2019)。在这种情况下,海拔梯度被认为是有用的“自然实验”,可以评估各种环境因素对土壤微生物群落的影响,因为它们的特征是气候变化和短期地理距离的生物特征发生了巨大变化(Körner,2007年)。在过去的几年中,关于土壤微生物和海拔的研究激增。已经确定了土壤微生物多样性和升高丰度的不同模式,这些模式是由温度,降水,土壤pH值,养分含量,碳/氮比和植物生产率驱动的,具体取决于给定的梯度及其地理位置及其地理位置;但是,也已经报道了这种模式的缺乏(Looby and Martin,2020)。这指出需要进一步研究的需要。此外,土壤养分含量和土壤有机物变化的化学成分随升高(Bardelli等,2017; Siles等,2017)。了解这些变化是如何由土壤微生物控制的,反之亦然,与最先进的生态模型有关。在这种情况下,目前的研究主题是动机的。本研究主题的目的是为研究人员提供一个平台,以分享其关于海拔梯度及其驱动因素的土壤微生物的新研究。该研究主题特别有兴趣汇编有关季节性动态,网络结构以及土壤微生物群落和垃圾分解的新信息,沿着整个地球的高度梯度。
不断监视葡萄文化管理实践的长期影响并评估改善葡萄园业务环境足迹的机会。这与葡萄酒行业特别相关,因为种植者面临着由于气候变化,劳动力短缺和生产成本升级而造成的破坏性挑战。近年来,非侵入性数字技术的开发和测试已经进行了大量发展,其中一些技术已经证明了葡萄酒葡萄的种植,管理和收获的方式有所改善,以在环境和经济上可持续的方式生产优质的葡萄酒。在本文中,我们描述了许多传感技术,包括光谱,多光谱和高光谱成像,叶绿素荧光,热力计,电阻率,电阻率,激光成像检测和范围,以及计算机视觉以及平台以及通常安装或嵌入或嵌入到近端或远程监视的地方。人工智能,因为它可以作为将数据转换为葡萄种植者用于做出明智决定的不同信息的一种手段。使用这些技术的一个主要目标是为葡萄种植者和葡萄酒生产商获取并提供信息,作为通过更知名的决策过程改善土地和葡萄藤管理的基础。还描述了这些技术运作方式背后的原则。尽管这些技术具有巨大的种植者潜力,但它们的采用和使用将取决于用户友好的软件和设备,以及在范围内的可观成本。讨论了这些技术和葡萄园中的人工智能的当前和未来应用,讨论了有关土壤特性和地形,营养生长,树冠建筑,营养和水状态,害虫和疾病,作物预测,产量,果实组成,葡萄园采样,目标采样,目标管理和选择性收获。
摘要。这21个世纪的主要环境挑战是二氧化碳引起的气候变化,有限的研究重点是森林形成(例如超镁铁)的土壤碳捕集潜力。然而,了解土壤的物理化学特性对于确定土壤有机物的碳储存潜力至关重要,土壤有机物的碳储能是在巴拉望岛岛的矿物质富生态系统中进行了研究的。来自Brgy的超镁铁质森林。Rio Tuba,Batarazaw和Sitio Magarwak,Brgy。sta。卢尔德(Lourdes),菲律宾波多黎各城市,被考虑进行本研究。Pearson和Kruskal-Wallis检验用于建立土壤物理化学参数的层次结构,例如碳,pH,质地,粒子和散装密度,孔隙率和有机物(OM)涉及碳储能。大多数超镁铁质的土壤是沙质壤土或沙质粘土壤土,其散装BD和Clayey,其储存的碳比沙质土壤更多。在土壤特性中,土壤质地,尤其是粘土质土壤,在土壤有机碳(SOC)池中比土壤pH(p = 0.59),土壤孔隙率(0.39),散装密度(0.37)和颗粒密度(0.32)具有更大的影响力(P =1.46e⁻³)。SOC与BD成反比,土壤孔隙率直接受土壤深度影响。SOC和有机物在深度下降,而在根际层处较高的碳固相,从表层土壤中的4–7%到下层土壤中的3-5%。波多黎各普林斯加城的超镁铁矿地区储存的有机碳(99.05吨HA –1)比巴塔拉扎(Bataraza)(85.68吨ha –1)。
已经研究了土壤有机物的农艺益处已有数百年历史了,但是当代重点已经扩大,以询问土壤有机碳(SOC)的长期储存如何有助于缓解气候变化。了解广阔的牧场中SOC隔离的潜力对于气候变化政策,农业土地管理和碳市场机会至关重要。在这篇综述中,我们评估了已发表的现场试验和建模研究的证据,用于在管理牲畜放牧的澳大利亚牧场土壤中进行隔离。我们发现,与新管理有关的高质量SOC股票变化数据的长期研究很少,我们的分析受到数据限制,研究之间的冲突以及高度可变的气候,土壤和跨生产系统的景观条件的限制。降雨和土壤特性是牧场中SOC股票变化的主要决定因素,并且很难检测到这些环境中的管理影响。但是,有一致的证据表明:(1)在现有草草中播种更多的生产性草或豆类通常会增加SOC股票; (2)长时间的长期库存与SOC净损失有关; (3)放牧或排除放牧会导致SOC的增加,尤其是在退化的土壤中; (4)从种植到永久牧场的转换导致隔离,受管理历史的影响; (5)旋转放牧策略表明,相对于连续放牧,对SOC股票的影响可忽略不计; (6)水块最初增加的SOC库存,但尚未证明持久性。我们讨论了在不确定性以及牲畜生产的相关利益和相关利益和权衡取舍的情况下,在牧场上进行SOC隔离的机会,并提出建议以改善主要管理策略的证据库。
抽象的农艺师和生产商通常固有地知道季节性和场内作物变异性的关键驱动因素。然而,随着全球对更可持续和生产性粮食系统的需求不断增长,了解和量化它们对于最大程度地提高投入效率和生产力潜力至关重要。这项研究的重点是位于新南威尔士州Moree(新南威尔士州)西部1099公顷的案例研究领域,那里有10个以上的收益率数据。数字土壤图是由关键土壤特性和约束产生的(例如使用野外收集的土壤数据在四个深度至0.9 m的土壤数据以及近端和远程感知的空间数据的情况下,使用了水的能力。使用LIDAR数据以1 m分辨率创建了场的高程图。Xgboost模型,具有土壤和高程预测因子为变量,用于预测每个季节的产量。然后使用Shapley添加说明(SHAP)来解释输出,并通过确定和映射预测变量的最负面值来解释最有限变量的图。然后确定田间每个点的最限制因素(小麦或鹰嘴豆),以及季节性潮湿或干季。结果在生产最有限的限制中显示出一些一致的趋势。“湿”季节产生了最不一致的趋势,因为在不同的农作物阶段或作物类型上,供水事件的影响和严重程度变化。此外,还检查了一个案例研究季节,以了解尿素管理决定对作物产量的可变率的影响。总体而言,这项研究表明,解释性机器学习对于理解和量化时空影响作物变异性非常有用,这将在未来改善作物管理。
保护农业(CA)被广泛推广为基于农业生态学的土壤保护方法。几项研究集中在撒哈拉以南非洲的CA对农作物产量和土壤水分动态的影响上,对CA对土壤有机碳(SOC)和相关分数的影响的关注有限。我们收集了马拉维以北的Mzimba区的30个配对农场的代表性土壤样品,以确定耕作和土壤深度对土壤物理化学特性,总SOC和有机碳分数的影响。未受干扰的土壤核心进行批量密度测量。使用土壤分馏方法确定不同的SOC池,而土壤物理化学分析是使用障碍土壤样品的标准实验室方法进行的。土壤有机碳含量的范围为CA图的0.4-1.8%。这显着大于在常规耕种图下测得的0.4-1.5%的SOC含量。耕作类型和土壤深度对SOC具有显着的相互作用。例如,在0-10 cm的深度与CA图下的10-30 cm相比,在0-10 cm的深度下测量了较大的SOC含量。土壤深度对大多数土壤特性具有显着影响。示例包括重颗粒有机物 - 碳(POM-C)馏分,矿物相关有机物 - 碳(MAOM-C),MAOM级分的氮和氮中的氮。在0-10 cm的土壤深度中,它们比10-30 cm的土壤深度大。但是,相比之下,耕作类型仅对较重的POM-C和MAOM-C级分有显着影响,而POM-C和MAOM-C级分比CA的大于常规耕地。保护农业显示出改善SOC及其相关分数的能力,这是针对理解土地管理对碳存储的影响的发现。
微生物接种是一种关键的策略,在有益的微生物和植物之间建立了共生关系,从而增强了营养的吸收,增强对环境压力源的弹性,并最终促进更健康,更生产的植物生长。然而,尽管被广泛承认接种剂的有利作用,但接种对根际微生物组复杂相互作用的确切和细微影响仍然显着尚未得到充分兴奋。本研究探讨了细菌接种对土壤特性,植物生长和根际微生物组的影响。通过使用各种细菌菌株和合成群落(Syncom)作为普通豆类植物中的接种剂,通过16 s rRNA及其基因测序评估了根际的细菌和真菌群落。同时评估了土壤化学参数,植物特征和基因表达。研究结果表明,细菌接种通常降低了pH和V%,而在根际中增加了H + Al和m%。它还降低了与排毒,光合作用和防御机制相关的植物中的基因表达,同时增强了根际细菌多样性,有可能使植物健康受益。特异性细菌菌株对根际微生物组的组装产生了不同的影响,主要影响根际细菌而不是真菌,从而间接影响了土壤条件和植物。值得注意的是,Paenibacillus polymyxa接种改善了植物氮(提高5.2%)和铁水平(提高28.1%),而蜡状芽孢杆菌提高了霉菌性率(70%)。此外,接种导致根际内网络相互作用的复杂性增加(约15%),可能会影响植物健康。总体而言,这些发现突出了将细菌引入根际,增强营养物的可用性,微生物多样性并促进有益的植物 - 微生物相互作用的重大影响。
Barbarash, David M. 数字景观表现 dbarbara@purdue.edu Bigelow, Cale A. 草坪科学;土壤特性和草坪草营养 cbigelow@purdue.edu Bilenky, Moriah 可持续园艺 mbilenky@purdue.edu Bressan, Ray 应激生理学 bressan@purdue.edu Dudareva, Natalia 植物生物化学和分子生物学 dudareva@purdue.edu Gómez, Celina 受控环境农业、水培、植物繁殖 cgomezva@purdue.edu Guan, Wenjing 蔬菜和甜瓜作物生产 guan40@purdue.edu Hallett, Steve 可持续农业 halletts@purdue.edu Handa, Avtar 采后和分子生物学 ahanda@purdue.edu Hirst, Peter 果树栽培学 hirst@purdue.edu Hoagland, Lori 特色作物生产系统 lhoaglan@purdue.edu Huang, Yiwei 景观性能和景观生态学 huan1655@purdue.edu Langenhoven, Petrus 生产园艺 plangenh@purdue.edu Li, Ying 功能基因组学;植物对环境的反应 li2627@purdue.edu Maynard, Elizabeth 可持续蔬菜生产 emaynard@purdue.edu Meyers, Stephen 特种作物杂草科学 slmeyers@purdue.edu Mickelbart, Mike 园艺/植物生理学 mmickelb@purdue.edu Mitchell, Cary 受控环境农业 cmitchel@purdue.edu Nemali, Krishna 受控环境农业;水培法、室内农业、花卉栽培 knemali@purdue.edu Orvis, Kathryn 园艺 / 青少年教育 orvis@purdue.edu Patton, Aaron 草坪草管理系统、草坪杂草科学 ajpatton@purdue.edu Percevault, Erin 景观建筑 eperceva@purdue.edu Porterfield, D. Marshall 受控环境农业 porterf@purdue.edu Prokopy, Linda 园艺社会科学 lprokopy@purdue.edu Raghothama, KG 植物营养分子生物学 kgraghoth@purdue.edu Rotar, Sean Michael 美国景观史、设计教学 srotar@purdue.edu Siciliano, Paul C Jr 景观建筑史与理论、普渡大学植物园 sicilian@purdue.edu Thompson, Aaron 土地利用规划的人性化、生态化和空间化 awthomps@purdue.e Torres, Ariana 特色作物营销 torres2@purdue.edu Varala, Kranthi 植物非生物胁迫;系统生物学 kvarala@purdue.edu Widhalm, Joshua 植物天然产物代谢 jwidhalm@purdue.edu
1。今天的引言,有机农产品的种植是世界上最重要的问题之一,它基于有机肥料的使用。包括;可以通过使用辅助物来实现。从这个角度来看,可以通过培养辅助作物,达到高生物质,粉碎栽培的生物量,在田间均匀散布,耕作土地,考虑到自然土壤和气候条件,从而满足有机肥料的需求。然而,微生物在将有机肥料转化为植物吸收的一种形式中的重要性是无与伦比的,他们的研究是紧迫的任务之一。辅助作物的种植可改善土壤水和空气状态。当种植尖峰的农作物时,这种情况尤其明显。同样,如果秋季和早春的辅助作物被粉碎在地面上,它们在土壤中扮演卫生作用,并为棉花疾病和害虫的略有减少提供了基础[1,2]。siderates在改善土壤生育能力和土壤中的微生物过程中起着重要作用。根据数据,土壤微生物包括细菌,放线菌和真菌,其中约70%是细菌,约27-30%是放线症,约1-3%是真菌[3,4,5,6]。如果土壤的农业物理,水物质特性是适度的,则其中的微生物被激活,因此土壤肥力会增加。因此,对土壤菌群和生物学的了解,对各种农业技术活动的评估是一个非常重要的问题。尤其是,在短行棉花旋转中从棉花中释放的辅助物不仅会影响土壤的农业物理特性,而且会影响植物中发生的所有生命过程以及土壤的微生物活性,因此其研究是紧迫的问题之一。从来源中知道,从棉花,冬小麦和其他农作物种植的区域清除的土地上,辅助作物对土壤生育能力(包括土壤特性和微生物)具有显着的积极影响。然而,在撒马尔罕区域的旧灌溉草地 - 抗土壤的条件下,纯和混合种植了辅助作物的效果,生物量的培养以及所得的生物量在土壤上对土壤微生物活性的应用,并未充分研究。因此,这项研究是在2019 - 2020年根据萨马尔桑德地区Ishtikhon区的农场“ Nurmon Abdullaev”农场灌溉的草地 - 抗原土壤的条件进行的。
情景制定考虑了气旋发生的概率、气旋登陆时的角度、气候变化导致的海平面上升、潮汐的昼夜变化、潮汐的季节性变化、堤坝溃坝的位置以及溃坝的几何特性。孟加拉国沿海圩田的堤坝正在根据沿海堤坝改善项目 (CEIP) 进行重新设计 (BWDB, 2012)。CEIP 第一阶段对 17 个沿海圩田(包括 48 号圩田(研究区))的堤坝进行了重新设计,该阶段于 2013 年完成 (Islam et al., 2013)。在 CEIP 下,这 17 个沿海圩田的临海堤坝针对 25 年一遇的风暴潮气旋进行了重新设计 (Islam et al., 2013)。因此,本论文使用 25 年一遇的风暴潮气旋进行情景制定。气旋的角度影响研究区域的风暴潮高度。风暴潮高度随着风暴与海岸线的角度而增加(Azam 等人,2004 年)。潮汐条件影响风暴潮高度。研究区域高潮位和低潮位的风暴潮相差 1.2 米(Azam 等人,2004 年)。潮汐也会随季节变化。雨季和旱季的潮汐平均变化为 1.3 米。选择决口位置时考虑到没有红树林、沙丘、宽阔的海滩等防御风暴潮的设施。研究区域有 20 公里的临海堤坝。日本土木工程师学会(JSCE)团队进行的调查表明,研究区域的临海堤坝在气旋锡德(2007 年)期间被淹没(Hasegawa,2008 年)。因此,研究区临海堤坝的东、西和中部选择了三个溃坝位置(图 6.13)。这三个位置没有红树林、沙丘和宽阔的海滩。堤坝溃坝的几何形状和形成主要取决于风暴潮高度和堤坝的土壤特性。孟加拉国的沿海堤坝通常是土堤。堤坝溃坝的几何特性和溃坝所需的时间是按照美国垦务局(Zagonjolli,2007)的指示计算的。为了生成概率洪水图(PFM),我们结合不同的参数生成了一个由 72 个场景组成的场景矩阵(表 6-3),为了确定堤坝溃坝的关键位置,我们开发了三种最坏情况场景(表 6-4)。第 6.3 节介绍了所开发场景的详细信息。4.7. 分析和比较不同场景的结果