土壤维持生物生产力的潜力(被定义为土壤健康)受到人类活动(例如农业)的强烈影响。因此,必须找到土壤管理的可持续农业和新方法,这些新方法必须找到土壤健康和作物产量。使用微生物接种剂的生物铜质化成为了常规干预措施(例如过量矿物质受精和除草剂使用)的有希望的替代方法。用作生物动力农业的中心部分的生物动力制剂对土壤特性(例如微生物生物量和呼吸)具有各种影响。我们进行了几个生物标志物实验,以推断生物动力制剂对土壤原核和真菌群落的影响,并将结果与有机管理进行了比较。潜在的植物生长促进扩增子序列变体使用基于其分类学身份的商业数据库进行定量。我们发现,与有机处理的土壤相比,在生物动力学中促进了假定的植物生长数量更高。此外,在生物动力学的土壤中发现了富含生物动力学制剂的核肿瘤扩增子序列变体,表明治疗后成功定植。在德国的三个地点和法国的21个地点进行了实验,涵盖了不同的农作物和土壤类型。总的来说,我们的结果表明,生物动力制剂可以充当生物肥料,从而通过增加植物生长促进微生物的丰富度来促进土壤健康。
特定作物生产或“处方耕作”是一种管理技术,其中除草剂和肥料等投入物的施用率根据土壤和农学特性的空间差异而变化。量化这些空间差异的数据可以通过密集采样和随后的实验室分析来收集,但为了获得最高效率,最好通过能够在田间进行分析的自动化仪器来获取这些数据。光谱反射率测量提供了一种估计田间土壤特性的可能方法。研究人员已经将土壤特性与可见光和近红外 (NIR) 反射率数据相关联(Dalal 和 Henry,1986 年;Gaultney 等人,1989 年;Gunsaulis 等人,1991 年;Henderson 等人,1989 年;Krishnan 等人,1980 年;和 Schreier,1977 年)。 Sudduth 和 Hummel (1991) 评估了可见光和近红外反射数据,以估计 TIlinoissoils 的有机物含量。通过偏最小二乘回归分析的近红外数据为 30 种土壤在枯萎点和田间持水量水平下提供了最佳相关性(r2= 0.92,预测标准误差为 0.34% 有机物)。使用的反射数据为 1720-2380 nm,间距和带宽为 60 nm,总共 12 个反射点。本文介绍了坚固耐用的便携式近红外光谱仪的设计、开发和评估
磷酸盐 - 溶解和固氮细菌对于增加土壤肥力和恢复盐度和其他非生物环境因素损害的土壤特性至关重要。提出的研究旨在探索和确定盐水中磷酸盐溶解和固氮细菌的形态特征。这项研究于2022年8月至2022年11月在印度尼西亚梅德岛的Muhammadiyah Sumatera Utara大学的农业学院实验室和实验室进行。潜在微生物的分离,以表征磷酸盐溶解和固氮细菌。采样始于在采样位置种植米饭和棕榈油的土壤。观察到的形态参数是纯菌落的颜色,形式,边缘,表面和升高。结果表明,盐水中的各种物种揭示了19个菌落和14个细胞的磷酸盐 - 溶解细菌和16个菌落和14个固氮细菌的细胞。磷酸盐溶解和固氮细菌的纯菌落显示形态特征(即颜色,形式,边缘,表面和升高)的差异。获得的潜在微生物试图增加土壤的生育能力和作物产量。关键字:磷酸盐溶解细菌,氮固定细菌,形态特征,盐水土壤关键发现:形态学特征的探索和鉴定是必须深入分析潜在微生物以提高盐水质量以提高农作物生产力的必要行动。
近年来,从国内,农业和工业来源处置有机废物引起了越来越多的环境问题。在这方面,可利用废物的回收是可行的。这可以通过有效的技术(例如Biodung堆肥和Vermitech)(结合生产Vermicompost的earth)的组合来解决。目前的工作是在2006 - 2007年期间在乔治敦圭亚那大学进行的,用于回收草剪剪,水风信子和牛粪,使用Eisenia Fetida是本地可用的earth表面物种。结果表明,有机废物(草剪和水风信子)通过部分生物肺堆肥和ver骨堆肥在60天的时间内成功处理。Biodung堆肥过程中的温度研究显示,温度的峰值升高,导致有害微生物的破坏。随后的Vermicomposting导致生产Vermicompost确认了早期实验中记录的出色营养状态。vermicomposting期间的温度表明波动限制为0.83。诸如Vermicompost之类的有机修正案增加了维持土壤特性所需的有机物内容,这对长期可持续性和作物生产率有益。因此,建议通过Vermitech大规模生产Vermicostost来回收有机废物,可以有效地帮助管理固体废物,而农民可以应用如此生产的Vermicompost来辅助作物生产。这可能会导致适当的环境友好的努力,用于平衡的生态系统。
叶子分解在温带森林中的变化差异很大,其质量,气候,土壤特性和分解剂等因素,但是森林异质性可能会掩盖局部树对分解和与垃圾相关的微生物组的影响。我们使用了24岁的普通花园森林来量化局部土壤条件对分解和垃圾微生物学的影响。我们将叶子袋袋引入了10种树种(5种杂菌菌根; 5个外生菌根)的土壤图,这些土壤是由所有10种全文设计中的所有10种。6个月后,我们评估了垃圾质量损失,C/N含量以及细菌和真菌组成。我们假设(1)分解和与垃圾相关的微生物组组成将主要由菌根类型的产生垃圾的树木形成,但是(2)通过基于菌根类型的条件树的菌根类型,通过基础土壤进行了重大修改。分解,在较小程度上,与垃圾相关的微生物组组成受到菌根类型的产生垃圾的树木的影响。有趣的是,潜在的土壤具有重要的次要影响,主要由树种而不是菌根类型驱动。这种次要的影响在皮纳纳科的树下最强。温带树可能会在土壤上局部影响土壤,以改变分解和与垃圾相关的微生物学。了解这种效果的强度将有助于预测对森林组成变化的生物地球化学反应。
在联邦农业大学(Funaab)研究了两个不同深度的摘要森林苗圃土壤,以作为土壤质量指标的物理化学特性和矿物质成分。土壤样品,并从土壤螺旋杆(0-15cm和15-30厘米)中收集土壤样品,空气干燥并带到实验室进行进一步分析。获得的数据持续了描述性统计以及方差分析(ANOVA)。在两个深度的位点1中,土壤pH值显着高(p <0.05)。同样,在每个位点比较时,土壤pH值在15-30 cm深度时的水平明显更高。在0 - 15 cm的土壤深度,除总氮,散装密度和沙子以外的所有物理化学特性显着差异(p> 0.05)(p> 0.05)。在0 - 15 cm和15-15 - 30 cm的土壤深度时,钾的水平高于其他大量营养素(K> mg> Na> Ca)。在0 - 15 cm土壤深度下,位点2中的微量营养素显着高于位点1,趋势如下如下。在土壤深度15 - 30厘米处,铜,锌和锰的水平明显高(p <0.05)(p <0.05),而浓度的顺序包括Cu> fe> Zn> Mn。该研究表明,森林苗圃土壤在研究部位的矿物质成分和物理化学特性各不相同。关键词:森林苗圃土壤;土壤特性;营养;土壤深度
橄榄垃圾,也称为橄榄色的Pomace,是橄榄油提取剩下的残留物。它由橄榄皮,果肉,种子和剩余的油组成。这种副产品传统上被认为是一种废物,经常被丢弃或燃烧。但是,最近的研究表明,橄榄浪费可能是有价值的资源,具有巨大的土壤改善潜力。当将橄榄废物纳入土壤中时,它可以通过增加其有机物含量并促进更好的土壤聚集来帮助改善土壤结构。这反过来可以改善水浸润和保留,并减少土壤侵蚀。此外,橄榄废物还含有氮,磷和钾,可以帮助改善土壤生育能力并为植物生长提供必需的养分。此外,橄榄废物也会对土壤微生物活性产生积极影响。橄榄废物中的有机物为土壤微生物提供了食物来源,在养分循环和土壤健康中起着至关重要的作用。这些微生物有助于分解有机物,释放营养和抑制植物病原体,最终有助于更健康,更有生产力的土壤生态系统。总而言之,橄榄废物是一种有价值的副产品,可以对土壤特性产生重大影响。通过将橄榄废物纳入土壤中,农民可以改善土壤结构,生育能力和微生物活性,从而导致更健康的植物并增加农作物的产量。此外,在土壤管理实践中使用橄榄浪费也可以帮助减少废物并促进农业的可持续性。关键字:橄榄浪费,土壤结构,土壤生育能力,土壤微生物。
人工智能 (AI) 已成为各个领域的变革力量,其彻底改变城市建筑的潜力越来越受到认可。本文详细研究了人工智能在公共建筑建设中的应用,强调了其成就、挑战和未来前景。审查涵盖了土木工程的各个方面,包括审查流程、分析、设计、施工管理、岩土工程、交通规划和施工监督。机器学习和遗传算法等人工智能方法被用于分析和设计,以增强流程、预测材料行为和推进医疗保健应用。在施工管理中,人工智能用于项目调度、资源分配、风险评估和安全管理。人工智能的岩土应用提供了精确的土壤特性估计、土壤损伤评估和地基施工改进。先进技术有助于交通规划、交通预测、智能交通系统和基础设施增强。此外,人工智能在公共基础设施的监测和维护方面发挥着至关重要的作用,包括桥梁检查、管道完整性评估以及通过图像处理和数据分析进行早期缺陷检测。尽管取得了重大进展,但人工智能在土木工程中的广泛应用仍然存在挑战,包括数据可用性、人工智能模型定义、道德问题以及协作努力的必要性。应对这些挑战需要研究人员、从业者和政策制定者的共同努力。最终,人工智能与土木工程的融合展示了其提高基础设施系统效率、安全性和可持续性的潜力。本综述总结了当前的知识,强调了挑战,并提出了未来研究的方向,以推进人工智能在土木工程中的融合。
不断监视葡萄文化管理实践的长期影响并评估改善葡萄园业务环境足迹的机会。这与葡萄酒行业特别相关,因为种植者面临着由于气候变化,劳动力短缺和生产成本升级而造成的破坏性挑战。近年来,非侵入性数字技术的开发和测试已经进行了大量发展,其中一些技术已经证明了葡萄酒葡萄的种植,管理和收获的方式有所改善,以在环境和经济上可持续的方式生产优质的葡萄酒。在本文中,我们描述了许多传感技术,包括光谱,多光谱和高光谱成像,叶绿素荧光,热力计,电阻率,电阻率,激光成像检测和范围,以及计算机视觉以及平台以及通常安装或嵌入或嵌入到近端或远程监视的地方。人工智能,因为它可以作为将数据转换为葡萄种植者用于做出明智决定的不同信息的一种手段。使用这些技术的一个主要目标是为葡萄种植者和葡萄酒生产商获取并提供信息,作为通过更知名的决策过程改善土地和葡萄藤管理的基础。还描述了这些技术运作方式背后的原则。尽管这些技术具有巨大的种植者潜力,但它们的采用和使用将取决于用户友好的软件和设备,以及在范围内的可观成本。讨论了这些技术和葡萄园中的人工智能的当前和未来应用,讨论了有关土壤特性和地形,营养生长,树冠建筑,营养和水状态,害虫和疾病,作物预测,产量,果实组成,葡萄园采样,目标采样,目标管理和选择性收获。
盐胁迫影响着全世界的大片耕地,导致植物生长和产量显著下降。为了减少盐胁迫对植物生长和产量的负面影响,研究植物激素、养分吸收和利用、培育耐盐品种和增强其形态生理活性是应对日益严重的盐胁迫的一些综合方法。已经进行了大量研究来探究这些综合方法对植物生长和产量的关键影响。然而,对这些在盐胁迫下调节植物生长和产量的综合方法的全面综述还处于早期阶段。本综述主要关注盐胁迫下植物养分的吸收和利用以及耐盐品种的培育等主要问题。此外,我们阐述了这些综合方法对作物生长和产量的影响,说明了植物激素在改善形态生理活动方面的作用,并确定了植物在盐胁迫下参与这些综合方法的一些相关基因。本综述表明,HA 与 K 结合可改善植物的形态生理活动和土壤特性。此外,NRT 和 NPF 基因家族可增强养分吸收,NHX1 、 SOS1 、 TaNHX 、 AtNHX1 、 KDML 、 RD6 和 SKC1 可维持离子稳态和膜完整性以应对盐胁迫的不利影响,而 sd1/Rht1 、 AtNHX1 、 BnaMAX1s 、 ipal-1D 和 sft 可改善不同植物的生长和产量。本研究的主要目的是全面回顾各种策略在盐胁迫下的表现,这可能有助于进一步解释植物在盐胁迫下调节植物生长和产量的机制。