转谷氨酰胺酶 (TGases) 催化钙依赖性异肽键在蛋白质结合的谷氨酰胺和赖氨酸底物之间形成。之前我们已经表明,活化的 TGase 3 在位点 2 和 3 处获得两个额外的钙离子。位点 3 处的钙离子导致通道打开。在此位点,通道的打开和关闭可能会根据结合的金属进行调节。在这里,我们提出通道的前端可以被两种底物用于酶反应。我们提出,谷氨酰胺底物从 Trp236 直接进入酶,如分子对接所示。然后赖氨酸底物接近打开的活性位点以与 Trp327 结合,从而形成异肽键。此外,通过直接比较 TGase 3 与其他 TGase 的结构,我们能够识别出可能参与谷氨酰胺和赖氨酸底物的一般和特异性识别的几种残基。
摘要 虽然电阻式随机存取存储器 (RRAM) 如今被视为未来计算的有前途的解决方案,但这些技术在编程电压、开关速度和实现的电阻值方面存在内在的可变性。写入终止 (WT) 电路是解决这些问题的潜在解决方案。然而,以前报道的 WT 电路并没有表现出足够的可靠性。在这项工作中,我们提出了一种工业上可用的 WT 电路,该电路使用根据实际测量校准的 RRAM 模型进行模拟。我们执行了大量 CMOS 和 RRAM 可变性模拟,以提取所提出的 WT 电路的实际性能。最后,我们使用从实际边缘级数据密集型应用中提取的内存痕迹来模拟所提出的 WT 电路的效果。总体而言,我们在位级别展示了 2 × 到 40 × 的能量增益。此外,由于采用了所提出的 WT 电路,我们展示了 1.9 × 到 16.2 × 的能量增益,具体取决于应用程序的内存访问模式。
决议Alderman Robinson解释说,这最初是一年的,延长了六个月,现在我们要求再延长六个月。他在最后一个延伸中解释说,他不想再扩展它,因为这座城市已经有一年半的时间来实现了一些东西。他根据NYCOM的律师解释了这一点最重要的是,在采用CDP并创建新的分区代码时,该市应紧急迫切。他解释说,他可以理解我们为什么将其置于适当的位置,但是他认为作为一个城市,我们可以做得更好,并解释说他将投票。Alderman McCall解释说,一旦我们将其设置在一边,我们需要制定一个计划以向前发展。她解释说,她将对CDP投票,但这是她最后一次投票是的,我们需要将分区放置在位,而不是将罐头踢到路上。Kerper女士解释了CDP的第53页,列出了分区代码更新,并将太阳能设施作为优先级。她解释说,我们在7月申请了一家专业公司的资金,以重做整个分区代码,我们仍在等待奖励公告。
无限尺寸的量子系统(例如骨振荡器)为量子传感提供了丰富的资源。然而,关于如何操纵这种骨气模式以超越参数估计的一般理论尚不清楚。我们提出了一个一般算法框架,量子信号处理干涉法(QSPI),通过推广Ramsey型干涉法,以在量子力学的基本限制下进行量子传感。我们的QSPI传感协议依赖于通过概括量子信号处理(QSP)从Qubits到混合量子振荡器系统来对振荡器的正交运算符进行非线性多项式转换。我们使用QSPI传感框架在单发限制中在位移通道上做出有效的二进制决策。理论分析表明,在单次乘以测量的情况下,传感精度与算法的传感时间或电路深度呈呈相反。我们进一步串联了一系列这样的二进制决策,以逐局的方式执行参数估计。数值模拟以支持这些语句。我们的QSPI协议为量子提供了统一的框架
当前汽车领域的研究已经从安全角度证明了控制器局域网 ( CAN ) 协议的局限性。应用层攻击涉及创建恶意数据包,被认为可以从远程进行,但可以被现代入侵检测系统 ( IDS ) 轻松检测到。另一方面,较新的链路层攻击更隐蔽,可能更具破坏性,但需要物理访问总线。在本文中,我们介绍了 CANflict,这是一种纯软件方法,允许从未修改的微控制器在数据链路层可靠地操纵 CAN 总线,克服了最先进工作的局限性。我们证明可以从远程受感染的 ECU 部署隐秘的 CAN 链路层攻击,目标是同一 CAN 网络上的另一个 ECU。为此,我们利用微控制器外设之间存在的引脚冲突来制作多语言帧,这允许攻击者在位级别控制 CAN 流量并绕过协议规则。我们通过实验证明了我们的方法在高端、中端和低端微控制器上的有效性,并通过发布一个可扩展的工具为未来的研究奠定了基础,该工具可用于在不同平台上实现我们的方法并在数据链路层构建 CAN 对策。
NAVSEA 标准项目 FY-25 项目编号:009-91 日期:2023 年 10 月 1 日 类别:II 1. 范围:1.1 标题:螺旋桨在位检查;完成 2. 参考:2.1 S9086-HP-STM-010/CH-245,螺旋桨和推进器 3. 要求:(I)“目视检查”3.1 按照 2.1 第 3 节清洁并完成每个螺旋桨和螺旋桨盖的目视检查。3.2 记录 3.1 中获取的所有检查数据。3.2.1 以批准的可传输介质提交一份清晰易读的完整螺旋桨目视技术检查报告表 NAVSEA 9245/3 副本,列出目视检查结果以及显示任何裂纹或缺陷的大小和位置的草图3.2.2 用金属边缘防护装置覆盖每个螺旋桨叶片的整个周边,并根据 2.1 用钢带固定。 3.3 将每个螺钉和塞子固定在每个螺旋桨盖的外部,以防止其脱落。 (V)“检查叶片对准” 3.4 检查主减速器联轴器法兰上每个螺旋桨叶片上“BLADE”字样的存在和准确性。 3.4.1 在联轴器轮毂上印上与每个螺旋桨叶片对齐的“BLADE”字样。印记必须是 1/8 英寸到 1/4 英寸的字体,低应力标记。禁止蚀刻。 3.5 在脱离船坞之前,拆除 3.2.2 中安装的叶片边缘保护装置。
这项工作描述了一个理论框架的原则性设计,从而通过压缩来实现有限字符串的有限多组的快速准确的算法信息度量。我们方法的一个独特特征是操纵理论本身的实体和数量的重复,明确表示:压缩字符串,模型,速率延伸状态,最小的足够模型,关节和相对复杂性。这样做,一种称为Parselet的可编程的,可编程的递归数据结构本质上提供了字符串的建模,作为来自编码常规部分的有限字符串集的参数化实例的串联。这支持了这项工作的另一个独特特征,这是Occam剃须刀之外的Epicurus原理的天然实施例,以便为数据生成最重要和最明显的明确模型。该模型是通过最小变化的原理来迭代发展的,以达到所谓的最小数据模型。parselets也可用于计算有关数据的任何任意假设。提出了一个无损,限制,以压缩表示的表示,该表示可以立即重复使用磁盘上存储的昂贵计算,以便将其快速合并为我们的核心例程,以获取信息计算。进行了两种信息度量:一个是确切的,因为它纯粹是组合,而另一个可能会产生轻微的数值不准确性,因为它是最小模型的Kolmogorov复杂性的近似值。信息对称性在位级别执行。尽可能,将Parselets与实际数据上的现成压缩机进行比较。其他一些应用程序只是由Parselets启用。
摘要:法国小鼠诊所 (Institut Clinique de la Souris; ICS) 已生产出 2000 多个用于 C57BL/6N 小鼠“点菜”诱变的靶向载体。尽管大多数载体已成功用于小鼠胚胎干细胞 (ESC) 中的同源重组,但少数载体在多次尝试后仍无法靶向特定位点。我们在此表明,将 CRISPR 质粒与与之前失败的质粒相同的靶向构建体进行共电穿孔可以系统地获得阳性克隆。然而,必须仔细验证这些克隆,因为大量克隆(但不是全部)显示靶向质粒在位点处发生串联。详细的南方印迹分析可以表征这些事件的性质,因为标准的长距离 5′ 和 3′ PCR 无法区分正确和错误的等位基因。我们表明,在 ESC 扩增之前进行简单且廉价的 PCR 可以检测和消除带有串联体的克隆。最后,尽管我们只测试了小鼠 ESC,但我们的结果强调了任何结合使用 CRISPR/Cas9 和环状双链供体的转基因细胞系(如已建立的细胞系、诱导性多能干细胞或用于体外基因治疗的细胞系)存在错误验证的风险。我们强烈建议 CRISPR 社区在使用 CRISPR 增强任何细胞类型(包括受精卵母细胞)中的同源重组时,使用内部探针进行南方印迹。
摘要:定期间隔短的短文重复(CRISPR)及其相关蛋白(CAS-9)是所有活细胞中基因组编辑工具的最有效,有效,准确的方法,并在许多应用学科中使用。指导RNA(GRNA)和CRISPR相关(CAS-9)蛋白是CRISPR/CAS-9系统中的两个基本组成部分。CRISPR/CAS-9基因组编辑的机制包含三个步骤,即识别,切割和修复。设计的sgrna通过互补的碱基对识别感兴趣基因中的目标序列。虽然CAS-9核酸酶在位点3碱基对上游与原始基序上游进行双链断裂,但通过非同源末端连接或指向同源的修复细胞机制来修复双链的断裂。CRISPR/CAS-9基因组编辑工具在许多领域都有广泛的应用,包括医学,农业和生物技术。在农业中,它可以帮助设计新谷物以提高其营养价值。在医学上,正在研究癌症,HIV和基因疗法,例如镰状细胞疾病,囊性纤维化和杜钦肌营养不良。该技术还通过CAS-9蛋白的高级修饰来调节特定基因。然而,免疫神经城,有效的分娩系统,脱靶效应和道德问题一直是扩展临床应用中技术的主要障碍。关键字:CRISPR,CAS-9,SGRNA,基因编辑,机制,应用尽管CRISPR/CAS-9成为分子生物学的新时代,并且从基本分子研究到临床应用中具有无数的作用,但在实际应用中仍然存在挑战,需要各种改进来克服障碍。
1 “适应性细菌免疫中的可编程双 RNA 引导 DNA 内切酶”(PMID:22745249 PMCID:PMC6286148 DOI:10.1126/science.1225829) https://pubmed.ncbi.nlm.nih.gov/22745249/ 2 聚集的规律间隔的短回文重复序列-CRISPR 相关蛋白。 CRISPR 是与(适应性)免疫相关的基因所在位点的名称。它具有一个带有回文的独特序列,是由九州大学的石野吉住教授发现的。 Cas 是一组蛋白质的名称。 Cas9是一种被称为核酸酶的蛋白质,具有切割DNA双螺旋结构的功能。请参阅文章末尾的参考资料。 3.三井全球战略研究所的《2016年值得关注的四项技术:基因组编辑》(作者:冈田智之)中主要通过案例研究介绍了CRISPR-Cas9。 https://www.mitsui.com/mgssi/ja/report/detail/__icsFiles/afieldfile/2016/10/20/160215mt.pdf 4 iPS细胞研究应用研究所利用CRISPR-Cas9删除与免疫排斥有关的HLA基因组,成功创建了iPS细胞。此外,在杜氏肌营养不良症(MDM)病例中,该研究所通过使用自己开发的病毒样颗粒,将利用CRISPR-Cas9/CRISPR-Cas3的外显子跳跃的iPS细胞有效地递送至细胞,成功再生了骨骼肌干细胞。这是在小鼠身上进行的研究成果,希望未来能够应用于人类。 日本新药公司的MDM治疗药物“viltolarsen”和Sarepta Therapeutics公司的Eteplirsen(在日本未获批)都是常规核酸药物,并未使用基因组编辑技术。