摘要。空间系统必须处理由空间和地面传感器收集的大量时空地球和空间观测数据。尽管通信中存在数据延迟,但数据收集速度非常快,并且建立了复杂的地面站网络来收集和存档遥测数据。地面部分接收到的数据可以提供给最终用户。除了存档数据之外,可用数据还为数据分析提供了机会,可以支持决策过程或为目标需求提供新的见解。不幸的是,对于从业者来说,识别空间领域数据分析的潜力和挑战并不容易。在本文中,我们反思并综合了现有文献的发现,并为在空间系统环境中建立和应用数据分析提供了综合概述。为此,我们首先介绍空间系统中采用的流程,并描述数据科学和机器学习过程。最后,我们确定了可以映射到数据分析问题的关键问题。
鉴于生物多样性和对生态系统的了解,采样在海洋调查中变得越来越重要。随着 GIS 平台的采用,可以在底栖和远洋环境中查询样本的相关性,从而最大限度地提高科学家对海洋的了解。因此,仔细分析、存储和解释对于保持随后的数据库达到高标准至关重要。样本描述很容易受到人为偏见的影响,对沙子和淤泥之间沙粒大小的错误判断会影响海洋建模的输出,并可能导致遗漏受气候变化严重影响的区域。因此,我们试图在本文档中预先消除数据收集过程中可能存在的任何歧义或分歧。
致谢 作者谨向瑞典航天界表示感谢;感谢瑞典国家航天委员会的 Kerstin Fredga 教授、Per Tegnér、Per Nobinder、Silja Strömberg、Lennart Nordh 博士等;感谢 Göran Johansson、Olle Norberg、Claes-Göran Borg、Peter Möller、Hans Eckersand、Peter Sohtell、Per Zetterquist、Jörgen Hartnor、Tord Freygård 以及航天工业内众多其他太空爱好者。在瑞典国防界,我要感谢国防物资管理局的 Manuel Wik、Mats Lindhé、Lars Andersson、Thomas Ödman、Björn Jonsson 和 Curt Eidefeldt;感谢瑞典国防学院的 Bo Huldt 教授邀请我为战略年鉴做出贡献;瑞典武装部队的 Anders Eklund、Anders Frost、Urban Ivarsson、Lars Carlstein、Göran Tode、Rickard Nordenberg、Ulf Kurkiewicz 和 Peter Wivstam;以及瑞典国防无线电研究所的 Bo Lithner。法国外交部(对外关系部 - 文化关系总局)提供的奖学金使我得以在 1982 年至 1983 年期间在巴黎度过了三个学期,在巴黎大学学习理论物理学和天体物理学。我还要感谢林雪平技术大学的 Torsten Ericsson 教授在我担任巴黎助理技术专员期间的指导,以及 KTH 的 Anders Eliasson 博士。还要感谢爱因斯坦和薛定谔的前学生、意大利帕维亚大学的 Bruno Bertotti 教授,他认可我在日内瓦联合国“防止外空军备竞赛特设委员会”的工作,并邀请我作为第四届卡斯蒂利翁切洛国际会议“促进核裁军 - 防止核武器扩散”的发言人。关于我在日内瓦的工作
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要 - 非事物网络(NTN)对于无处不在的连通性至关重要,可在遥远和非层面区域提供覆盖范围。但是,由于目前NTN是独立运作的,因此他们面临诸如隔离,可扩展性有限和高运营成本等挑战。与地面网络集成卫星的明显,提供了一种解决这些局限性的方法,同时通过应用人工智能(AI)模型实现自适应和成本效益的连接。本文介绍了Space-O-Ran,该框架将开放式无线接入网络(RAN)原理扩展到NTN。它使用分布式空间运行智能控制器(Space-rics)的层次结构闭环控制,以动态管理和优化两个域之间的操作。为了启用自适应资源分配和网络编排,所提出的体系结构将实时卫星优化和控制与AI驱动的管理和数字双(DT)建模集成在一起。它结合了分布式空间应用程序(SAPP)和分离的应用程序(DAPP),以确保在高度动态的轨道环境中的稳健性能。核心功能是动态链接接口映射,它允许使用卫星上的所有物理链接适应特定的应用程序要求并更改链接条件。仿真结果通过分析不同NTN链接类型的LAS限制来评估其可行性,表明群集内协调在可行的信号延迟范围内运行,而将非实时时间任务降低到地面基础架构对地面基础设施的降低可以增强对第六代(6G)网络的可扩展性。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
由生态气象观察站拍摄的多视图现实生活图像可以为植被监测提供高通量可见光(RGB)图像数据,但目前,关于多视图图像的植被监测效应及其与卫星遥感监测的植被监测效应的研究报告很少。在这项研究中,使用了喀尔斯特裸露的岩石和植被作为研究对象,使用4个生态学术站的远景图像和近视图图像来比较机器学习细分算法对远距离和近乎近距离图像的分段算法的细分效应,分析远距离观点的植被图像和远距离观察的图像以及远距离的远程图像和远距离的远程图像和远距离的远距离图像。结果表明:(1)机器学习算法适用于多视图图像的绿色植被分割。近视图图像的机器学习算法的分割精度高于远景图像的分割精度,精度率超过85%。在弱光条件下捕获的图像可以获得更高的植被分割精度,而裸岩的比例对图像分割精度没有明显影响。(2)不同RGB植被指数所呈现的植被的年际变化趋势差异很大,从远处看,植被的年际变化差异大于近距离观点。ndyi和rgbvi在植被变化中表现出良好的一致性,也可以更好地显示植被的年际差异。从年内变化的角度,各种RGB植被指数显示出不同程度的季节性变化。喀斯特地区的植被从4月到10月生长良好,RGB植被指数从5月到6月在大多数车站达到了高峰。从遥远的角度来看,植被指数的季节性分布更为明显。(3)地面多视图RGB植被指数与不同卫星的NDVI之间的相关性存在显着差异。与FY3D NDVI的相关性比Modis NDVI弱。大多数RGB植被指数与MODIS NDVI有良好的相关性,并且具有显着差异的索引(P <0.05)占70.5%。从远处看,大多数RGB植被指数与FY3D NDVI和MODIS NDVI之间的相关性比近距离观点更好,并且在RGB索引中与不同站点和近距离近距离近距离的NDVI相关的RGB指数有显着差异。机器学习算法与NLM过滤优化相结合,在多视图图像分段中具有很大的优势。不同的RGB植被指数对植被生长的变化有不同的反应,这可能与植被指数和植被形态和位置的带子组成有关。卫星的图像射击模式更接近远视角,因此
Teknofest组织的比赛鼓励年轻人探索无人的车辆技术,从而促进科学和技术进步。,它为那些渴望领导自主海洋技术发展的人提供了重要的机会。从事无人地面车辆技术的参与者将设计和开发能够成功完成任务的车队的车辆。在国防部和阿斯尔森部的领导下组织,比赛使年轻的创新者能够在未来的技术中脱颖而出。
• Request for Information • Advance Notices • Synopsis (required for over $25K) • Solicitations • Large procurements: FAR 5.203‐ Open minimum of 30 days • Orders under MAC IDIQs: Best practice of 30 days unless exception • Award notices • SeaPort award announcements not required – DFARS 205.303 • Industry Days for complex procurements when time permits
