混合元素粉末是金属添加剂粉末中合金粉末的新兴替代品,这是由于可与其生产的各种合金范围及其不开发新颖的原料所节省的成本所致。在这项研究中,通过在BE TI-185粉末上进行SLM,在通过Infra-Red成像和通过同步X射线衍射跟踪表面温度的同时,研究了SLM期间的原位合金和并发微观结构演变。然后,我们进行了mortem电子显微镜(反向散射电子成像,能量分散X射线光谱和电子反向散射衍射),以进一步深入了解微观结构的发展。我们表明,尽管放热混合有助于熔化过程,但激光熔化仅在合金和未混合区域的混合物中产生。全合金和一致的微观结构仅通过在热影响区域的进一步循环才能实现。2021作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
摘要生成随机数对于许多现实世界应用很重要,包括密码学,统计抽样和蒙特卡洛模拟。受测量的量子系统通过Born的规则产生随机结果,因此自然研究使用此类系统以生成高质量的随机数的可能性是很自然的。但是,当前的量子设备会受到错误和噪声的约束,这可能会使输出位偏离Uni-Form分布。在这项工作中,我们提出和分析两个方案,可用于增加带有Hadamard Gate的电路和嘈杂的量子计算机中的测量值时获得的位置的均匀性。这些协议可以在其他标准过程之前使用,例如随机性扩增。我们对量子模拟器和实际量子计算机进行实验,获得的结果表明,这些方案对于提高生成的局部的概率很有用,使其通过统计测试进行均匀性。
混合元素粉末是金属增材制造中预合金粉末的一种新兴替代品,因为用它们可以生产的合金范围更广,而且由于不开发新原料而节省了成本。在本研究中,通过在 BE Ti-185 粉末上进行 SLM,同时通过红外成像跟踪表面温度并通过同步加速器 X 射线衍射跟踪相变,研究了 SLM 过程中的原位合金化和同时发生的微观结构演变。然后,我们进行了事后电子显微镜检查(背散射电子成像、能量色散 X 射线光谱和电子背散射衍射),以进一步了解微观结构的发展。我们表明,虽然放热混合有助于熔化过程,但激光熔化只会产生合金区域和未混合区域的混合。只有通过在热影响区进一步热循环才能实现完全合金化,从而获得一致的微观结构。 2021 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可协议 ( http://creativecommons.org/licenses/by/4.0/ ) 开放获取的文章。
a 北京邮电大学理学院信息光子学与光通信国家重点实验室,北京 100876,中国。电子邮件:bike@bupt.edu.cn b 清华大学材料科学与工程学院新型陶瓷与精细工艺国家重点实验室,北京 100084,中国。电子邮件:wxh@tsinghua.edu.cn c 哥伦比亚大学应用物理和应用数学系,纽约,NY 10027,美国。电子邮件:sb2896@columbia.edu d 布鲁克海文国家实验室凝聚态物理与材料科学系,纽约州厄普顿 11973,美国 e 中国科学院物理研究所北京凝聚态物理国家实验室,北京 100190,中国 † 提供电子补充信息(ESI)。请参阅 DOI: 10.1039/ d0tc05975g
1北京邮政与电信大学科学学院信息光子学和光学通信的关键实验室,中国北京100876。电子邮件:bike@bupt.edu.cn 2国家主要实验室新陶瓷和精细处理,材料科学与工程学院,北京大学,北京大学,北京100084,电子邮件:wxh@tsinghua.edu.edu.cn.cn 3 3 3 3 3 3应用和应用数学部门sb2896@columbia.edu 4浓缩物理和材料科学系,布鲁克黑文国家实验室,纽约州阿普顿市11973 5北京国家冷凝物质物理学实验室,物理学研究所,中国学院科学研究所,贝吉利亚学院,北京100190,中国电子补充信息(ESI)。参见doi:10.1039/x0xx00000x
多孔电极内反应电流分布不均匀是电池充电/放电过程中普遍存在的现象,并且常常控制着电池的倍率性能。多孔电极中的反应不均匀性通常归因于电解质和/或固体电极相内质量传输的动力学限制。然而,在这项工作中,我们发现它也受到电极材料固有热力学行为的强烈影响,特别是平衡电位对充电状态的依赖性:当平衡电位曲线的斜率降低时,电极反应变得越来越不均匀。我们采用数值模拟和等效电路模型来阐明这种相关性,并表明反应不均匀性的程度和由此产生的放电容量可以通过无量纲反应均匀度数来预测。对于平衡电位对电荷状态不敏感且表现出显著反应不均匀性的电极材料,我们展示了几种在空间上均化多孔电极内反应电流的方法,包括匹配电子和离子电阻、引入分级电子电导率和降低表面反应动力学。© 2020 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款分发(CC BY,http://creativecommons.org/licenses/by/4.0/),允许在任何媒体中不受限制地重复使用作品,前提是对原始作品进行适当的引用。[DOI:10.1149/1945-7111/abb383]
摘要:调整宽带隙 β - Ga 2 O 3 的光学和电子特性对于充分利用该材料在电子、光学和光电子领域现有和新兴技术应用中的潜力至关重要。在本研究中,我们报告了 Ti 掺杂剂不溶性驱动的化学不均匀性对 Ga 2 O 3 多晶化合物的结构、形态、化学键合、电子结构和带隙红移特性的影响。采用传统的高温固相反应路线在可变的煅烧温度(1050 − 1250 ° C)下合成了 Ga 2 − 2 x Ti x O 3(GTO;0 ≤ x ≤ 0.20)化合物,烧结温度为 1350 ° C。GTO 样品的 X 射线衍射分析表明,仅在非常低的 Ti 掺杂浓度(<5 at. %)下才会形成单相化合物,而较高的 Ti 掺杂会导致形成复合材料,其中含有大量未溶解的 TiO 2 金红石相。然而,在烧结样品中,未溶解的金红石相的一部分转化为单斜 TiO 2。 Rietveld 对本征 Ga 2 O 3 和单相 Ti 掺杂化合物(x = 0.05)进行细化,证实样品在具有 C 2/m 空间群的单斜对称性中稳定存在。样品的表面形貌表明,本征 Ga 2 O 3 呈现棒状形貌,而 Ti 掺杂化合物呈现球形形貌。此外,在具有异常晶粒生长的掺杂化合物中,与本征 Ga 2 O 3 相比,可以注意到晶格孪生引起的条纹。Ga 2p 的高分辨率 X 射线光电子能谱分析显示,由于相邻离子的电子云之间的相互作用,与金属 Ga 相比发生了正向偏移。由于 Coster − Kronig 效应,Ti 2p 1/2 光谱显示出异常增宽。采用混合密度泛函理论的第一性原理计算表明,Ti 优先取代八面体 Ga 位点,并在 Ga 2 O 3 中表现为深层施主。从光吸收光谱可以看出,光学带隙发生了红移。Ga 2 O 3 带隙内的吸收归因于未溶解的 TiO 2 的夹杂,因为 TiO 2 在 Ga 2 O 3 带隙内具有 I 型排列。此外,还研究了 GTO 化合物的电催化行为。从电催化研究中可以明显看出,与本征 Ga 2 O 3 相比,掺杂化合物表现出明显的电催化活性。
溅射沉积如图1所示,溅射沉积过程是通过用离子轰击所需沉积材料的目标来完成的。事件离子在目标内引发碰撞级联。当级联反应以足够的能量克服表面结合能到达目标表面时,可以弹出原子。溅射室的示意图如图2所示。电场将传入的气体电离(通常是氩气)。阳性离子轰击靶(阴极)和溅射原子在底物上(阳极)。可以加热底物以改善键合。溅射产量(即从每个入射离子射出的原子的平均原子数)取决于几个参数,包括相对于表面的离子入射角,离子的能量,离子和靶原子的相对质量以及靶原子的表面结合能。虽然影响溅射的相对较大的数字参数使其成为一个复杂的过程,但具有如此多的控制参数可以对所得膜的生长和微观结构进行很大程度的控制。各向异性的晶体靶材料,晶格相对于靶表面的方向影响溅射产量。在多晶溅射目标中,以不同速率的不同方向溅射的晶粒。这可能会影响沉积薄膜的均匀性。一个关键控制参数是目标材料中纹理的均匀性。图3显示了铜单晶溅射产量的各向异性(Magnuson&Carlston,1963年)。所有面部中心材料的一般趋势均具有:S(111)> s(100)> s(110)。
2 法政大学 关键词:GaN-on-GaN、肖特基势垒二极管、均匀性、光致发光、功率器件 摘要 为了大规模生产 GaN-on-GaN 垂直功率器件,n 漂移层在 10 15 cm 3 范围内的净施主浓度 ND NA 的晶圆级均匀性是一个重要因素,因为它决定了击穿电压 VB 。在本研究中,我们通过控制 GaN 衬底的偏角展示了 GaN 肖特基势垒二极管晶圆级均匀性的改善。通过 MOVPE 在具有各种偏角和偏差的独立 GaN 衬底上生长外延结构。使用电容电压测量(C V)、光致发光(PL)和二次离子质谱(SIMS)仔细分析了 ND NA 的变化。与碳有关的NA变化导致了NDNA的不均匀性,而这与晶圆的衬底偏角有关。通过最小化偏角的变化可以提高NDNA的均匀性。引言在GaN衬底上制造的垂直结构GaN功率开关器件对于高效功率转换系统很有前景,因为这些器件提供极低的导通电阻(R on)和高击穿电压(VB)[1-3]。减少对器件成品率和可靠性致命的致命缺陷是一个重要问题。GaN-on-GaN二极管初始故障机理已有报道[4],其中具有外延坑的二极管在非常低的反向电压下表现出严重击穿。此外,最近有报道称表面粗糙度会影响可靠性[5]。在使用金属有机 (MO) 源引入碳 (C) 杂质时,n 漂移层中的净施主浓度必须控制在 10 15 cm3 范围内才能获得高 VB [6]。通过低施主含量,可以在负偏置条件下抑制 pn 或肖特基界面处的峰值电场 [7, 8]。然而,关于垂直 GaN-on-GaN 器件中净施主浓度的晶圆级均匀性的报道很少。
1*Pragati 工程学院,机械工程系副教授,安得拉邦 2* Aditya 工程学院,机械工程系副教授,安得拉邦 3*JNTU KAKINADA,机械工程系教授,安得拉邦 摘要 本研究旨在通过实验和计算研究风洞中速度分布的均匀性。风洞是一种仪器,用于检查流体流过完全浸没的物体时产生的流线和力。uni-insta 的风洞(300 毫米*300 毫米)设计为具有较大的工作段,以便能够布置大量场地模型。该风洞内置边界层模拟系统,可以很好地模拟大气速度梯度。风洞围绕分段式木质框架建造,在沉降长度和工作段采用外部级胶合板,侧面采用层压板覆盖,便于维护。内置钟形安装入口,后面是平滑的沉降长度室,由分级良好的蜂窝状细网组成。工作部分的侧面板是透明的丙烯酸盖,可提供较大的可视区域。额外的哑光后侧面板为烟雾轨迹提供摄影构造。工作部分的顶板是可拆卸的,以便固定模型。关键词:- uni-insta