HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
1 引言 镍基高温合金具有优异的高温力学性能、高抗蠕变和疲劳性能以及非常好的耐腐蚀性能,被广泛应用于现代航空发动机和燃气轮机的涡轮叶片。镍基高温合金在恶劣条件下长期服役的性能,很大程度上取决于合金元素、合金浓度和强化相的形态。在工业实践中,镍基高温合金 René N5 在完全热处理状态下使用。固溶处理可使微观结构部分均质化,随后的时效可获得高体积分数的立方体状 γ′ 沉淀物。因此,获取更多有关铸态高温合金微观结构和性能的信息对于正确设计和控制后续热处理至关重要。枝晶间和枝晶间元素的凝固偏析会诱发非平衡相的形成,如碳化物、共晶相或其他低熔点相,这些相应在均质化过程中溶解[1-3]。
摘要:激光熔覆提供了先进的表面处理能力,可提高部件的性能。然而,其有效性经常受到熔覆过程中热裂纹形成的挑战。本研究重点研究了通过激光熔覆应用于 304LN 不锈钢的新型钴基合金 (K688) 涂层中热裂纹的形成机理和抑制方法。结果表明,热裂纹的形成受液膜稳定性、应力集中和沉淀相的影响。大多数热裂纹出现在 25 ◦ –45 ◦ 大角度晶界 (HAGB) 处,因为这些晶界具有高能量,可稳定液膜。与高斯光束相比,平顶光束可产生具有较低温度梯度和更缓和的流体流动的熔池,从而降低涂层内的热应力和裂纹敏感的大角度晶界 (S-HAGB) 的比例。最后,通过使用平顶激光束优化工艺参数,可显著抑制裂纹形成。这些发现为实现异种材料的高质量激光熔覆提供了技术基础,为优化工艺参数以防止热裂纹的形成提供了见解。
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
据报道,一种定量策略来设计和开发基于MG-AL的合金以实现高热有效性,其中可以引入特定的元素以降低MG矩阵中的Al浓度,并抑制Mg 17 Al 12相形成的形成,通过形成新的金属层间相。基于定量计算,该策略由新型的模具铸造Mg3.2AL4.4LA0.4ND(以wt。%)合金提供,该合金在环境温度下提供了114.3 w/(m∙k)的热电导率为114.3 w/(m∙k),在300°C,比300°C,〜255%的137.5 w/(M∙k)中的热电导率(M。同时,与AE44合金相比,合金还具有优异的环境屈服强度为143.2 MPa,伸长率为8.2%,并且在升高温度下的AE44合金。
假设线性弹性断裂力学,无论机体几何形状如何,具有相同应力强度因子的两个裂纹将以相同的速率扩展。然而,在 GKN Aerospace,对铸件制成的 C(T) 和 Kb 试样进行疲劳裂纹扩展试验的结果显示,疲劳裂纹扩展速率存在明显差异,其中 Kb 试样中的裂纹扩展速度快于 C(T) 试样中的裂纹。已经研究并量化了这些观察到的差异。对于疲劳裂纹扩展试验,在 R = 0 的脉动拉伸下加载的开裂 Kb 试样的裂纹扩展速度比 C(T) 试样中的裂纹快 3.6 倍,这是在所有试验温度下和材料 Ti-64、Ti-6242 和 IN-718 的平均值。已经使用锻造的 Ti-64 和 IN-718 制成的 C(T) 试样进行了新的疲劳裂纹扩展试验,并将其与锻件制成的 Kb 试样的疲劳裂纹扩展速度进行了比较。发现锻件制成的 Kb 和 C(T) 试样的疲劳裂纹扩展速率差异非常小。
假设线性弹性断裂力学,无论物体的几何形状如何,具有相同应力强度因子的两个裂纹将以相同的速率扩展。然而,在 GKN Aerospace,对铸件制成的 C(T) 和 Kb 试样进行疲劳裂纹扩展测试的结果显示,疲劳裂纹扩展速率存在明显差异,其中 Kb 试样中的裂纹比 C(T) 试样中的裂纹扩展得更快。这些观察到的差异已经过研究和量化。对于疲劳裂纹扩展测试,在 R = 0 的脉动拉伸下加载的破裂 Kb 试样的裂纹扩展速度是 C(T) 试样中裂纹的 3.6 倍,在所有测试温度和材料 Ti-64、Ti-6242 和 IN-718 上取平均值。使用锻造的 Ti-64 和 IN-718 制成的 C(T) 样品进行了新的疲劳裂纹扩展测试,并与锻件制成的 Kb 样品的疲劳裂纹扩展率进行了比较。发现锻件制成的 Kb 和 C(T) 样品之间的疲劳裂纹扩展率差异非常小。
来自执行董事 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 ITA 工业委员会努力 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 全尺寸钛中部船舶剖面可制造性和结构性能调查.......................................................................................................19 全球铜、镍市场变迁为钛创造产业机遇.......................................................................................................19 22 DMRL 科学家发明铂铝化物涂层,保护航空发动机部件免受热腐蚀 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 使用钛网的工业水净化系统 . . . . . . . . . . . . . . . . . . . . . . . 28 Sipchem 高管介绍钛镀镍工艺的进展 . . . . . . . . . . . . 31 执行摘要 – TITANIUM USA 2013 摘要 . . . . . . . . . . . . . . . . . . .
在焊接操作过程中用于保护焊缝和焊接电弧免受大气污染。氧气、氮气、水蒸气以及空气和车间气氛中的其他成分都可能对焊件有害。在连接过程中,有几种气体用于保护镍和镍基合金。最常见的是氩气、氦气、氩气-氦混合气和氢气。氩气和 1% 氧气混合气也用于焊接有限数量的合金(参考文献 1)。当使用气体进行连接时,建议使用特殊的高纯度等级;这些高纯度等级可在市场上买到。最近一份关于 Inconel 600 气体钨电弧焊件的报告强调了这一点(参考文献 2)。结论是,氩气保护气中相对少量的杂质元素(特别是氧气)对电弧的熔化效率有很大影响。总杂质含量从 690 ppm 增加到仅 2440 ppm 导致焊接渗透率下降约 50%。虽然这些杂质水平远高于