目前,噬菌体的抗菌和治疗效果有限,主要是由于噬菌体抗性的快速出现以及大多数噬菌体分离株无法结合和感染多种临床菌株。在这里,我们讨论了如何通过基因工程的最新进展来改进噬菌体疗法。首先,我们概述了如何设计受体结合蛋白及其相关结构域以重定向噬菌体的特异性并避免抗性。接下来,我们总结了如何将噬菌体重新编程为原核基因治疗载体,以递送抗菌“有效载荷”蛋白(例如序列特异性核酸酶)以靶向复杂微生物群中的特定细胞。最后,我们描述了大数据和新型人工智能驱动的方法,这些方法可能会指导未来改进合成噬菌体的设计。
评论CRISPR的生物伦理问题:一种基因组编辑技术Ashima Bhan,Satish Sasikumar,Arvind Goja,Rajendra TK Genetics and Molecular Biologary Lim,D。Y. Patil Biotechnologicy and BiioInformatics D. Y. Patil Vidyapeeth博士,D。通讯作者:Ashima Bhan。电子邮件 - ashimabhan@gmail.com摘要生物技术领域的最新和重大科学成就是CRISPR的发现(聚集了定期散布的短篇小说重复序列)。crispr已成为最现代,最受欢迎的工具之一,这主要是由于其低成本和效率,可用于编辑基因组。因此,这项技术几乎是生物医学和农业科学的每个维度的关键,并且在治疗病毒感染,血友病,癌症和遗传遗传异常方面具有潜在的应用。但是,当这种用于编辑基因的技术不公平地用于改善生物学特征时,道德问题可能会出现,这仅仅是出于美学的目的或比人群中其他人的优势。这不仅会导致社会歧视和动荡,而且有可能改变生物的进化进化。在这方面,应制定对CRISPR技术,风险评估,政策和程序的监管实施,以防止严重滥用这项技术。关键词:生物伦理学,生物技术,CRISPR,进化,优生学,基因编辑
Judith 是 FDA、CBER 组织和先进疗法办公室 (OTAT) 的国际监管专家。她在 OTAT 的主要职责是促进细胞、组织和基因疗法监管要求的国际协调,并领导 OTAT 监管产品的标准制定活动。在标准方面,她与国家标准与技术研究所和标准协调机构密切合作,以促进先进疗法的标准制定。她代表 FDA 参加 ISO 技术委员会 276、生物技术、ASTM F04 组织工程产品委员会和肠外药物协会标准委员会。她在国际监管要求协调方面的工作包括担任国际药品监管机构计划细胞治疗工作组和基因治疗工作组的秘书处。她是亚太经合组织监管协调小组委员会先进疗法优先工作领域的联合主席,并担任东北大学监管卓越中心和杜克大学医学院-新加坡国立大学监管卓越计划的教员。
传统育种在提高作物产量以满足不断增长的全球人口需求方面取得了巨大成功,特别是小麦,在过去 60 年中,小麦产量增长了三倍多,而耕地面积却没有显著增加。然而,传统育种的改良速度缓慢,并且受到小麦及其杂交品种的变异范围的限制。基因组学可以定义为“专注于基因组结构、功能、进化、绘图和编辑的跨学科生物学领域”(维基百科)。因此,它有可能通过加快进展速度和增加可用的变异范围来彻底改变作物改良。尽管有这种潜力,但生物技术在小麦改良中的应用进展缓慢,特别是在应用于加工和营养谷物的质量时。因此,我们将考虑其中的原因并确定未来研究的重点。
小麦是一种重要的谷物,全球一半人口都食用小麦。小麦面临环境压力,人们使用了不同的技术(CRISPR、基因沉默、GWAS 等)来提高其产量,但 RNA 编辑 (RES) 在小麦中尚未得到充分探索。RNA 编辑在控制环境压力方面具有特殊作用。对不同类型的小麦基因型中的 RES 进行了全基因组鉴定和功能表征。我们通过 RNA 测序分析采用了六种小麦基因型来实现 RES。研究结果表明,RNA 编辑事件均匀发生在所有染色体上。RNA 编辑位点随机分布,在小麦基因型中检测到 10-12 种类型的 RES。在耐旱基因型中检测到的 RES 数量较多。在六种小麦基因型中还鉴定了 A-to-I RNA 编辑(2952、2977、1916、2576、3422 和 3459)位点。基因本体分析后发现,大多数基因参与了分子过程。还检查了小麦中的 PPR(五肽重复序列)、OZ1(细胞器锌指序列)和 MORF/RIP 基因表达水平。正常生长条件使这三个不同基因家族的基因表达出现差异,这意味着不同基因型的正常生长条件可以改变 RNA 编辑事件并影响基因表达水平。而 PPR 基因的表达没有变化。我们使用变异效应预测器(VEP)来注释 RNA 编辑位点,Local White 在蛋白质的 CDS 区域具有最高的 RES。这些发现将有助于预测其他作物的 RES,并有助于小麦抗旱性的发育。
骨髓增生性肿瘤 (MPN) 会导致血细胞(如红细胞增多症)或血小板(原发性血小板增多症)的过度生成。JAK2 V617F 是许多 MPN 中最常见的体细胞突变,但之前在小鼠中对这种突变的建模依赖于转基因过度表达,并导致不同的表型,在某些情况下,这些表型归因于表达水平。CRISPR-Cas9 工程通过精确修改原代细胞中的内源性位点,为建模和潜在治愈遗传编码疾病提供了新的可能性。我们在此开发了“无疤痕”的 Cas9 试剂,用于在永生化人类红系祖细胞 (HUDEP-2)、CD34+ 成人人类造血干细胞和祖细胞 (HSPC) 以及免疫表型长期造血干细胞 (LT-HSC) 中创建和逆转 JAK2 V617F 突变。我们发现与内源性 JAK2 V617F 等位基因相关的体外增殖没有明显增加,但与野生型细胞共培养揭示了突变提供的竞争性生长优势。即使在没有造血细胞因子信号传导的情况下,获得 V617F 等位基因也会促进红系祖细胞的终末分化。综上所述,这些数据与 MPN 的逐渐进展的表现相一致,并表明与转基因过表达模型相比,内源性获得性 JAK2 V617F 突变可能产生更细微的表型。
花粉粒的数量在物种内和物种间存在差异。然而,与雄蕊细胞分化方面的研究相比,人们对这一数量性状的分子基础知之甚少。最近,通过拟南芥的全基因组关联研究,分离出了第一个负责花粉数量变异的基因 REDUCED POLLEN NUMBER1 (RDP1),并表现出自然选择的特征。该基因编码酵母 Mrt4 (mRNA 转换 4) 的同源物,它是大核糖体亚基的组装因子。然而,没有进一步的数据将核糖体功能与花粉发育联系起来。在这里,我们使用标准 A. thaliana 登录号 Col-0 表征了 RDP1 基因。由 CRISPR/Cas9 产生的移码突变体 rdp1-3 揭示了 RDP1 在开花中的多效性作用,从而表明该基因是花粉发育以外的多种过程所必需的。我们发现,天然的 Col-0 等位基因导致 Bor-4 等位基因的花粉数量减少,这是通过定量互补测试评估的,该测试比转基因实验更敏感。结合通过序列比对确定的 Col-0 中的历史重组事件,这些结果表明 RDP1 的编码序列是导致自然表型变异的候选区域。为了阐明 RDP1 参与的生物学过程,我们进行了转录组分析。我们发现负责核糖体大亚基组装/生物合成的基因在差异调控基因中富集,这支持了 rdp1-3 突变体中核糖体生物合成受到干扰的假设。在花粉发育基因中,编码碱性螺旋-环-螺旋 (bHLH) 转录因子的三个关键基因(ABORTED MICROSPORES ( AMS )、bHLH010 和 bHLH089 )以及 AMS 的直接下游基因在 rdp1-3 突变体中下调。总之,我们的结果表明核糖体通过 RDP1 在花粉发育中发挥特殊功能,RDP1 含有受选择的天然变体。
转座因子 (TE) 是真核生物基因组中不可或缺的组成部分,在基因调控、重组和环境适应中发挥着多种作用。它们在基因组内移动的能力导致基因表达和 DNA 结构变化。TE 是遗传和进化研究的宝贵标记,有助于遗传图谱和系统发育分析。它们还通过促进基因重排(导致新的基因组合)来深入了解生物体如何适应不断变化的环境。这些重复序列对基因组结构、功能和进化有重大影响。本综述全面介绍了 TE 及其在生物技术中的应用,特别是在植物生物学中,由于其广泛的功能,它们现在被认为是“基因组黄金”。本文讨论了 TE 在植物发育中的各个方面,包括其结构、表观遗传调控、进化模式以及它们在基因编辑和植物分子标记中的应用。目标是系统地了解 TE 并阐明它们在植物生物学中的多种作用。