• 前导序列:位于 CRISPR 基因座一端的非编码序列(长度为 80-500 个核苷酸),有助于启动 RNA 转录并整合新的入侵者基因组(间隔物)。 • 间隔物:与入侵者(即病毒物质)相匹配的短而独特的 DNA 序列,本质上是原核生物免疫系统的记忆。 • 重复序列:分隔每个间隔物的短而相同的 DNA 序列。它们有规律地间隔开来,通常是回文结构(从 5' 和 3' 方向对称),这就是 CRISPR 这个首字母缩略词的由来“成簇的、有规律间隔的、短回文重复序列”。 位于 CRISPR 阵列附近的是 cas 基因,它们是编码区,用于编码蛋白质复合物的合成,如 Cas 蛋白(因此得名 CRISPR-Cas 系统),Cas 蛋白是一种能够消化 DNA 的核酸酶。当病毒入侵原核生物时,与病毒遗传物质相匹配的 CRISPR 阵列会转录成单个向导 RNA (sgRNA),该 RNA 会与 Cas 蛋白结合并引导其朝向病毒的遗传物质。当 sgRNA 检测到匹配的病毒 DNA 时,Cas 蛋白会裂解/切割 DNA,从而有效地阻止病毒感染。
Richard Freed 首席执行官 RheumaGen 采访人:Lynn Fosse,高级编辑 CEOCFO 杂志 CEOCFO:Freed 先生,根据您的网站,RheumaGen 正在彻底改变自身免疫领域,为什么会这样? Freed 先生:RheumaGen 正在通过开发一类新型疗法来治疗主要的自身免疫性疾病,从而彻底改变自身免疫领域。在我们独特的方法中,RheumaGen 专注于人类白细胞抗原 (HLA) – 或“免疫” – 基因,以实现一直被认为不可能实现的目标:控制人体免疫系统的触发。 CEOCFO:这与今天可能实现的有何不同? Freed 先生:首先,对于我们的先导疗法 RG0401,我们最初专注于治疗难治性或耐药性类风湿性关节炎 (RA) 患者。这些患者病情最严重,需求巨大,目前尚无治疗选择。其次,即使对于我们未来可能治疗的中度至重度患者,目前的治疗标准——无论是传统的 DMARD、生物制剂还是 JAK 抑制剂——都是在自身免疫炎症循环肆虐后 T 细胞激活后起作用,而在不断尝试对抗这些火焰的过程中,可以说,目前的药物也有显著的副作用,并且会全面抑制患者的免疫系统。我们的 HLA 基因编辑解决方案从源头上治愈了自身免疫性疾病,在本例中是类风湿性关节炎。CEOCFO:你们是如何做到这一点的?弗里德先生:嗯,这是经验和技术创新。首先,在经验和专业知识方面,我们的首席科学官 Brian M. Freed 博士和他在科罗拉多大学安舒茨医学院的团队拥有真正独特的专业组合:免疫学、组织相容性和再生医学。弗里德博士是一位免疫学教授,拥有数十年的经验,在该领域发表过许多出版物。他的大学实验室拥有 80 多名员工,年收入约 2000 万美元,负责对科罗拉多州和全国各地的数千例器官移植进行 HLA 分型并确保其组织相容性。他的实验室还拥有世界上最大的脐带血库之一,并在干细胞移植方面开展了大量医疗工作。其次,从技术上讲,这是一种自体造血干细胞 (HSC) 移植,我们使用 CRISPR/Cas9 编辑患者的 HLA 基因。换句话说,我们收集患者的血液干细胞;对患者的 HLA 基因进行一次精确编辑,以免被免疫系统检测为外来细胞;然后将编辑后的细胞注入患者体内。例如,在类风湿性关节炎中,当这些编辑过的细胞重新植入经过修改的 HLA 分子(现在与正常功能的分子相似)时,免疫系统不再呈现激活 T 细胞攻击人体自身蛋白质(如胶原蛋白)的自身抗原。 RheumaGen 的采访继续在第 3 页。
香蕉(Musa spp.),包括芭蕉,是亚热带和热带地区 140 多个国家种植的主要粮食和经济作物之一,全球年产量约为 1.53 亿吨,养活了约 4 亿人。尽管香蕉种植广泛且适应多种环境,但其生产面临着农业景观中经常共存的病原体和害虫的重大挑战。基于 CRISPR/Cas 的基因编辑的最新进展提供了变革性解决方案,可提高香蕉的恢复力和生产力。肯尼亚国际热带农业研究所的研究人员已成功利用基因编辑赋予香蕉对香蕉枯萎病 (BXW) 等疾病的抗性,方法是针对易感基因,并通过破坏病毒序列来抵抗香蕉条纹病毒 (BSV)。其他突破包括开发半矮化植物和增加 β-胡萝卜素含量。此外,经菲律宾监管部门批准,已开发出不易褐变的香蕉以减少食物浪费。香蕉基因编辑的未来前景一片光明,基于 CRISPR 的基因激活 (CRISPRa) 和抑制 (CRISPRi) 技术有望提高抗病性。Cas-CLOVER 系统为 CRISPR/Cas9 提供了一种精确的替代方法,证明了成功生成了基因编辑的香蕉突变体。精准遗传学与传统育种的结合,以及采用无转基因编辑策略,将是充分发挥基因编辑香蕉潜力的关键。作物基因编辑的未来前景令人振奋,可以生产出在不同的农业生态区茁壮成长、营养价值极高的香蕉,最终使农民和消费者受益。本文强调了 CRISPR/Cas 技术在提高香蕉的抗逆性、产量和营养品质方面的关键作用,对全球粮食安全具有重要意义。
我们还需要知道什么?与使用 CRISPR 相关的伦理问题包括获得充分知情同意的能力、基因编辑的潜在未来后果及其潜在的意外影响,以及基因编辑可能对后代产生的影响。基于 CRISPR 的疗法的长期影响目前尚不清楚。需要进一步研究新兴应用。对接受第一种基于 CRISPR 的疗法的患者进行长期跟踪将有助于了解这些治疗的安全性和有效性。虽然这些疗法中的第一个已经获得监管授权,但下一个可行的基于 CRISPR 的疗法仍处于早期开发阶段,关键临床试验预计至少要到 2027 年才能完成。
单基因血液病是全球最常见的遗传性疾病之一。这些疾病导致严重的儿童和成人发病率,有些甚至会导致出生前死亡。新型体外造血干细胞 (HSC) 基因编辑疗法有望改变治疗格局,但并非没有潜在的局限性。体内基因编辑疗法为这些疾病提供了一种潜在更安全、更易于获得的治疗方法,但由于缺乏针对 HSC 的递送载体而受到阻碍,而 HSC 位于难以接近的骨髓微环境内。在这里,我们提出,可以通过利用胎儿发育过程中易于接近的肝脏中的 HSC 来克服这种生物障碍。为了促进基因编辑货物向胎儿 HSC 的递送,我们开发了一种可电离的脂质纳米颗粒 (LNP) 平台,靶向 HSC 表面的 CD45 受体。在体外验证靶向 LNP 通过 CD45 特异性机制改善信使核糖核酸 (mRNA) 向造血谱系细胞的递送后,我们证明该平台在多种小鼠模型中介导体内安全、有效和长期的 HSC 基因调节。我们进一步在体外优化了该 LNP 平台,以封装和递送基于 CRISPR 的核酸货物。最后,我们表明,优化和靶向的 LNP 在单次宫内静脉注射后增强了胎儿 HSC 中概念验证位点的基因编辑。通过在胎儿发育期间体内靶向 HSC,我们系统优化的靶向编辑机制 (STEM) LNP 可能提供一种可转化的策略来治疗出生前的单基因血液疾病。
摘要:非生物胁迫,主要是干旱、高温、盐碱、寒冷和涝渍,对谷物作物产生不利影响。它们限制了全球大麦的生产并造成了巨大的经济损失。多年来,人们已鉴定出大麦在各种胁迫下的功能基因,随着现代基因编辑平台的引入,抗逆性基因改良也发生了新的转变。特别是,成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9) 是一种用于精确突变和性状改良的强大而多功能的工具。在这篇综述中,我们重点介绍了主要大麦生产国受胁迫影响的地区及其相应的经济损失。我们整理了大约 150 个与抗逆性相关的关键基因,并将它们组合成一个物理图谱,用于潜在的育种实践。我们还概述了精确碱基编辑、主要编辑和多路复用技术在有针对性性状修饰中的应用,并讨论了当前的挑战,包括高通量突变体基因分型和基因型依赖性在遗传转化中的应用,以促进商业育种。所列出的基因可以抵消干旱、盐度和营养缺乏等主要压力,相应基因编辑技术的潜在应用将为大麦改良以提高其气候适应能力提供参考。
基因编辑是最近开发的一种工具,用于许多生物技术过程。它对新西兰尤为重要,因为它可用于开发新的创新作物和牧草植物,这将使我们的农业系统受益,并在其他领域具有价值。然而,也存在需要管理的潜在风险。基因编辑比早期的基因改造方法更简单、更便宜,并且有可能以更可控的方式改变生物体的 DNA。但仍然有可能出现意想不到的变化,而且即使变化非常精确,也可能对生物体产生意想不到的影响——因此仍然需要监管监督。然而,这项技术发展非常迅速,20 多年前制定的新西兰法规不适合管理它。朱丽叶于 2019 年 8 月向总理介绍了基因编辑情况,她的简报可在此处查看。2023 年,朱丽叶向总理提供了一份更新的简报信。简介
CASSS 细胞和基因治疗产品 (CGTP) 2024 研讨会是一年一度的活动,行业、监管和学术专业人士将在会上讨论与细胞和基因治疗领域相关的挑战和最新动态。会议举办了各种全体会议和圆桌会议,以鼓励讨论从可比性和制造到基因组编辑技术和 ICH 指南等各种主题。一场受欢迎的全体会议是关于基因编辑产品的效力测定。该会议包含 3 个演讲,随后是小组讨论,由观众提问。第一位演讲者是 FDA 生物制品评估和研究中心 (CBER) 的 Andrew Byrnes 博士。他的演讲介绍了有关细胞和基因治疗产品效力保证的新指导文件草案的信息。他强调,效力保证策略 (PAS) 不仅仅涉及效力测定,而且成功的策略应该涵盖效力的所有方面。因为 PAS 是“一种综合方法,有助于确保每一批产品都具有实现预期治疗效果所需的效力”,1 Byrnes 博士详细说明,PAS 需要申办方了解并对其产品特有的效力相关特性进行风险评估,降低效力相关关键质量属性的风险,并在对产品和制造工艺有更多了解后重新评估和改进 PAS。本指南草案包括与 PAS 相关的所有方面的建议和一般建议,包括效力测定,特别是关于其使用、开发和验收标准。继 Byrnes 博士之后,ElevateBio 的 Debaditya Bhattacharya 博士介绍了针对亨廷顿氏病 (HD) 的体内 AAV 基因编辑疗法的效力测定的开发。作为 ElevateBio 的分析开发副总裁,他负责各种不同模式的 CMC 分析开发、策略和测试操作。考虑到试验性亨廷顿氏病疗法的预期活动,Bhattacharya 博士讨论了效力测定的开发策略以及如何确定属性(例如确定合适的细胞系)。在这种情况下考虑的主要属性是 1) 它是否包含用于 RNP 靶标接合的目标 SNP,2) 其 AAV 转导效率,以及 3) 在培养中生长和维持的“容易程度”。通过进行桑格测序以筛选 SNP、流式细胞术以访问转导以及