目的:确定表观遗传酶功能的巨噬细胞特异性改变,这有助于腹部主动脉瘤的发展(AAAS)。背景:AAA是一种威胁生命的疾病,其特征在于由基质金属脂蛋白酶和金属蛋白酶(TIMPS)的基质金属 - 脂蛋白酶和组织抑制剂的不平衡驱动的病原血管重塑。识别调节巨噬细胞介导的细胞外基质降解的机制对于开发新型疗法至关重要。方法:通过单细胞RNA测序和在人类主动脉组织样品中检查了set结构域在AAA形成中的组蛋白赖氨酸甲基转移酶2(SETDB2)的作用,通过单细胞RNA测序以及在质量促进的Miete and Angins a Gons Dietant和agn-fim-fatin和高-Fat诱导的单细胞型RNA测序以及髓样特异性setDB2中的作用。结果:与对照组相比,在主动脉/巨噬细胞和鼠AAA模型中,识别setDB2的人AAA组织的单细胞RNA测序上调。从机械上讲,干扰素-β通过JANUS激酶/信号传感器和转录信号传导的激活剂调节setDB2的表达,这将TIMP1-3基因启动子上的组蛋白3赖氨酸9赖氨酸9进行抑制,从而抑制了未控制的基质基质蛋白蛋白酶活性。巨噬细胞特异性敲除SETDB2(setDB2 f/f lyz2 cre +)保护的小鼠免受AAA形成,并抑制了血管内肿块,巨噬细胞的巨噬细胞和弹性碎片。setDB2的遗传耗竭阻止了由于去除TIMP1-3基因启动子上的抑制性组蛋白3赖氨酸9三甲基化标记,导致TIMP表达增加,
1 1,李卡·斯舍(Li ka Shing of Pharmagic and Pharmacy),李卡·谢斯(Li ka Shing)医学院,香港大学,香港,香港萨尔,中国香港,2临床医学院,李卡·斯夏德医学院医学院2中国4号家庭医学和初级保健系临床医学院,李卡·谢斯医学院,香港大学,香港萨尔,香港萨尔,中国香港,李卡·夏德医学院5学院中国深圳香港香港医院,8香港大学研究与创新研究所,中国深圳,9阿斯顿药学院,阿斯顿药学院,阿斯顿大学,伯明翰大学,英国伯明翰,10研究院,研究学院,伦敦大学,伦敦大学,伦敦伦敦大学,伦敦伦敦伦敦伦敦伦敦伦敦伦敦伦敦大学伦敦伦敦伦敦伦敦大学伦敦伦敦大学伦敦大学,1,李卡·斯舍(Li ka Shing of Pharmagic and Pharmacy),李卡·谢斯(Li ka Shing)医学院,香港大学,香港,香港萨尔,中国香港,2临床医学院,李卡·斯夏德医学院医学院2中国4号家庭医学和初级保健系临床医学院,李卡·谢斯医学院,香港大学,香港萨尔,香港萨尔,中国香港,李卡·夏德医学院5学院中国深圳香港香港医院,8香港大学研究与创新研究所,中国深圳,9阿斯顿药学院,阿斯顿药学院,阿斯顿大学,伯明翰大学,英国伯明翰,10研究院,研究学院,伦敦大学,伦敦大学,伦敦伦敦大学,伦敦伦敦伦敦伦敦伦敦伦敦伦敦伦敦大学伦敦伦敦伦敦伦敦大学伦敦伦敦大学伦敦大学,
摘要:在适应环境挑战时,酶滥交在进化上是在植物上获得新酶功能的有利有利的。但是,这种滥交会对微生物中植物酶编码的基因的表达产生负面影响。在这里,我们表明,精炼类黄酮3' - 羟化酶(F3'H)和4'-O -O-甲基转移酶(F4'OMT)的滥交可改善(2 s) - 大肠杆菌中的粘蛋白蛋白产生。首先,我们采用了反分子对接来筛选来自Tricyrtis hirta的高底物特异性Thf3'h,可以选择性地将100 mg l-1(2 s) - 纳林蛋白转换为(2 s)-eriodictyol,但不是(2 s) - sososakuranetin,with airair cyto p450 p450。第二,我们采用了一种定向的进化方法来限制Mentha×Piperita的MPOMT的滥交。携带MPOMT S142V突变体的菌株表现出对(2 s)eriodictyol的偏爱。最后,产生了27.5 mg l-1(2 s) - hisperetin,而仅少量的(2 s) - eriodictyol和(2 s) - 苏瓜氏素作为副产物积累。该值与父母菌株相比,(2 s) - 嵌素增加了14倍,以及侧产物的急剧减少。我们的工作强调了减轻微生物细胞工厂生产天然产物时植物酶滥交的好处。关键字:酶混合,类黄酮,(2s) - hesperetin,定向进化,类黄酮3' - 羟化酶,黄酮4''-o-甲基转移酶■简介黄酮类黄酮是遥远的基本c 6 -c 6 -c 6 -c 6 -c 6 -c 6 carbon carbon carbone carbon car car car the care1除了它们的生态重要性外,2种类黄酮施加抗氧化剂,3,4抗癌,5和肝保护活性。6最近,报告了类黄酮对SARS-COV19的积极作用。7在2020年,全球类黄酮市场的价值为1.497亿美元,预计到2030年将达到2.7178亿美元(按产品类型,表格,应用程序,应用:全球机会分析和行业预测,2021 - 2030年)。尤其是O-甲基化的类黄酮已成为具有众多生物学和药理特性的8-11
小分子羧基甲基转移酶(CBMT)对于调节生物学过程至关重要,并且在工业生物技术中非常有用。但是,它们主要仅限于植物中的安萨巴家族。在这项研究中,发现3-OPC羧基甲基转移酶(OPCMT),它们具有与Sabath MTS不同的催化机制,并且在微生物中广泛分布,显着扩大了小分子CBMT的知识和可用性。这些甲基转移酶(MTS)对于新生儿菌是必不可少的,而在人类中未发现,这表明它们可以成为抗生素的理想靶标。此外,它们的笨重的底物结合口袋将它们与其他MT区分开,可以促进特定抑制剂的设计。最后,OPCMT的广泛底物特异性和高催化效率也为可持续生产甲基提供了有价值的工具。
摘要:最近,发酵饮料中褪黑激素的存在与酒精发酵过程中的酵母代谢有关。褪黑激素最初被认为是脊椎动物的松果腺的独特产物,在广泛的无脊椎动物,植物,细菌和真菌中也被鉴定出来。这些发现带来了研究褪黑激素在酵母中的功能以及其合成的机制的挑战。但是,提高发酵饮料中这种有趣分子的选择和生产的必要信息是披露代谢途径中涉及的基因。到目前为止,仅提出了一个基因,该基因参与了酿酒酵母中的褪黑激素的产生,PAA1,一种多胺乙酰基转移酶,这是脊椎动物的Aralkylamine N-乙酰基转移酶(AANAT)的同源物。在这项研究中,我们使用不同的蛋白质表达平台评估了不同可能底物的生物转化,例如5-甲氧氨基胺,色氨酸和5-羟色胺,评估了PAA1的体内功能。此外,我们通过结合全局转录组分析和使用强大的生物信息学工具来预测S. cerevisiae中的Aanat的类似域,从而扩展了对新的N-乙酰基转移酶候选的搜索。候选基因的AANAT活性通过大肠杆菌中的过表达来验证,因为奇怪的是,该系统证明了比其自己宿主的酿酒酵母中的过表达更高的差异。我们的结果证实了PAA1具有乙酰化不同的芳基胺的能力,但AANAT活性似乎不是主要的乙酰化活性。我们还证明,PAA1P并不是这种AANAT活性的唯一酶。我们对新基因的搜索在酿酒酵母中检测到HPA2是一种新的芳基烷基胺N-乙酰基转移酶。这是第一个报告,清楚地证明了该酶参与AANAT活性。
Monkeypox是一种具有大流行潜力的疾病。是由poxviridae家族的双链DNA病毒(MPXV)引起的,它在细胞质中复制,并且必须编码其自身的RNA处理机械,包括封盖机械。在这里,我们介绍了其2'-O-RNA甲基转移酶(MTase)VP39的晶体结构与泛酶抑制剂sinefungin复合物,并根据其发现了一系列抑制剂。将这种2'-O-RNA MTase与来自未经含有的单链RNA病毒(SARS-COV-2和Zika)的酶进行比较,揭示了一种保守的Sininefungin结合模式,这暗示单个抑制剂可以用于无关病毒家族。的确,我们的几种抑制剂(例如TO507)也抑制冠状病毒NSP14 MTase。
摘要:最近发现DNA N6-甲基趋化(6MA)在基因中扮演调节作用,该作用与真核物种的各种生物学过程联系起来。6MA甲基转移酶的功能鉴定对于理解表观遗传6MA甲基化的潜在分子机制至关重要。据报道,甲基转移酶METTL4可以催化6ma的甲基化。但是,METTL4的功能在很大程度上未知。在这项研究中,我们旨在研究Bombyx Mori同源性METTL4(BMMETTL4)在鳞翅目模型昆虫中的作用。通过使用CRISPR-CAS9系统,我们在蚕中对BMMETTL4进行了体积突变,发现BMMETTL4的破坏会导致蚕胚晚期的发育缺陷和随后的致死性。我们进行了RNA-Seq,并确定了BMMETTL4突变体中有3192个差异表达的基因,其中包括1743个上调和1449个下调的基因。基因和基因组分析的基因本体论和京都百科全书表明,涉及分子结构,几丁质结合和丝氨酸水解酶活性的基因受BMMETTL4突变的显着影响。我们进一步发现,表皮蛋白基因和胶原蛋白的表达明显降低,而胶原酶高度增加,这对异常的胚胎和蚕的孵化性降低了。采取了这些结果,这些结果表明6MA甲基转移酶BMMETTL4在调节蚕的胚胎发育中的关键作用。
。cc-by-nc 4.0国际许可(未获得同行评审证明),他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2023年1月15日。 https://doi.org/10.1101/2020.07.24.219907 doi:biorxiv preprint
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2023年1月13日。 https://doi.org/10.1101/2023.01.12.523677 doi:biorxiv Preprint
DNA甲基化和DNA甲基转移酶(MTases) - 将甲基化标记引入DNA的酶已经研究了近70年。在本章中,我们回顾了DNA甲基化场中的关键发展,这些发展导致我们目前对DNA MTase的结构和机制的理解。我们讨论了DNA甲基化的基本生物学作用,包括发现DNA甲基化,细菌和真核MTases的克隆和序列分析以及其结构,机制,调节和分子进化的阐明。我们描述了对DNA甲基化在发育和疾病中的作用的不断发展的观点,对DNA甲基化基因组的分析的发明以及DNA MTases的生化鉴定和TET酶的生化鉴定,这与