口腔健康在决定整体健康和生活质量方面起着根本性的作用。然而,龋齿是一种影响牙齿的传染性微生物疾病,它仍然是影响发达国家和发展中国家口腔健康的主要问题。世界卫生组织确认,龋齿患病率的上升是一个重大的全球健康问题。1 这封信强调了开发一种负担得起的龋齿疫苗的重要性,并必须由公共卫生部门以广泛的重点和长远的眼光将其纳入所有儿童的常规疫苗接种计划。由于龋齿是一种不可逆的牙齿微生物疾病,符合传染病的定义,因此开发龋齿疫苗的研究至关重要。龋齿疫苗的主要功能是起到保护和预防蛀牙的作用。众所周知,变形链球菌在蛀牙的病理生理学中起着重要作用,因为其细胞主要含有粘附素、葡萄糖基转移酶 (GTF)、葡聚糖结合蛋白 (GBP)、13 kDa 蛋白质抗原 (抗原 D)、39 kDa 蛋白质 (AgIII)、29 kDa 蛋白质抗原 (抗原 A)、190 kDa 蛋白质 (AgI/II) 和 70 kDa 蛋白质抗原 (抗原 C) 等物质。由于这些细胞物质被认为对生物体与宿主之间的相互作用至关重要,因此大多数龋齿疫苗试验都集中在这些物质上。2,3 建议采用口服、全身和牙龈唾液等各种给药途径,并通过主动和被动免疫的方式给药。一些有前景的疫苗,如 pGJA-P/VAX、LT 衍生物/Pi39 – 512、KFD2-rPAc 和 SBR/GBR-CMV-nirB 等最近已经开发出来并进行了动物试验。4
摘要:已知白色念珠菌和链球菌在口腔中彼此协同相互作用。例如,葡萄糖基转移酶B(gtfb)由链球菌分泌,可以与白色念珠菌细胞表面结合,从而促进双物种生物膜形成。然而,介导与链球菌相互作用的真菌因子尚不清楚。白色念珠菌粘附素ALS1,ALS3和HWP1是白色念珠菌单物种生物膜形成中的关键参与者,但尚未评估它们在与S. Mutans相互作用中的作用(如果有的话)。在这里,我们研究了白色念珠菌细胞壁粘附蛋白ALS1,ALS3和HWP1在用链球菌形成双种物种生物膜上的作用。我们评估了白色念珠菌野生型ALS1 ∆ / ∆,ALS3 ∆ / ∆,ALS1 ∆ / ∆ / ∆ / ∆ / ALS3 ∆ / ∆ / ∆ / ∆ / ∆ / ∆ / ∆菌株,通过测量厚度的厚度,构造,构造,构造,构造,构造,代理,代理,构造,构造厚度,将双种物种形成二重种菌株。生物膜。我们观察到,白色念珠菌野生型菌株在这些不同的生物纤维分析中形成了增强的双种物种生物膜,并证实了白色念珠菌和葡萄链梭菌在生物纤维上下文中协同相互作用。我们的结果表明,白色念珠菌ALS1和HWP1是与S. mutans相互作用的主要参与者,因为当ALS1 ∆ / ∆ / ∆或HWP1Δ / ∆ / ∆菌株与链球菌在双重物种生物膜中培养双重生物膜形成。als3似乎在与双种物种生物膜形成中与S. mutans相互作用中似乎并没有明确的作用。总体而言,我们的数据表明白色念珠菌粘合剂ALS1和HWP1功能可调节与链球菌的相互作用,并且可能是未来治疗剂的潜在靶标。
摘要 在美国田纳西州橡树岭,Rhodanobacter 是受高浓度硝酸盐和铀污染的蓄水层中的优势菌属。原位刺激反硝化已被提出作为修复硝酸盐和铀污染的潜在方法。在 Rhodanobacter 种中,据报道 Rhodanobacter denitri filcans 菌株具有反硝化能力并含有丰富的金属抗性基因。然而,由于这些菌株缺乏诱变系统,我们对低 pH 抗性和在污染环境中占主导地位的能力的潜在机制的理解仍然有限。在这里,我们在两株 R. denitri filcans 菌株中开发了一种无标记缺失系统。首先,我们优化了 10 株 Rhodanobacter 菌株的生长条件,测试了抗生素抗性,并确定了合适的转化参数。然后,我们在 R. denitri filans 菌株 FW104-R3 和 FW104-R5 中删除了编码尿嘧啶磷酸核糖基转移酶的 upp 基因。所得菌株被命名为 R3_ D upp 和 R5_ D upp,并用作宿主菌株,以 5-氟尿嘧啶 (5- FU) 抗性作为反选择标记进行诱变,以产生无标记缺失突变体。为了测试开发的方案,在 R3_ D upp 和 R5_ D upp 宿主菌株中敲除了编码硝酸盐还原酶的 narG 基因。正如预期的那样,narG 突变体无法在以硝酸盐为电子受体的缺氧培养基中生长。总体而言,这些结果表明,同框无标记删除系统在两种 R. denitri ficans 菌株中有效,这将有助于未来对这些菌株进行功能基因组研究,进一步了解 Rhodanobacter 种中存在的代谢和抗性机制。
Manus Bio Inc.的此应用。寻求FSANZ的批准,用于使用转基因的大肠杆菌K-12来生产Steviol Glycosides(RebaudioSide M和RebaudioSide I)。重生M和Rebaudioside I都应被用作食品中的强烈甜味剂,并在澳大利亚新西兰食品标准代码中被批准为此目的。大肠杆菌菌株已经过遗传修饰,以产生用于生产叶糖苷的以下酶:1。尿苷三磷酸(UTP)-1-磷酸尿素尿溶解酶(EC 2.7.7.9)由GM Escherichia coli K-12产生,其中含有来自双二酰基二磷酸二磷酸的UTP-葡萄糖1-磷酸糖酸糖酸酯的GENE,尿苷二磷酸(UDP) - 葡萄糖基转移酶由GM大肠杆菌K-12产生,其中含有来自Oryza sativa(rice)3。蔗糖合酶(EC 2.4.1.13),其中含有甘氨酸Max(大豆)的蔗糖合酶的基因。这三种酶在技术上是有道理的,因为它们通过生产生产方法来生产叶糖苷,这与JECFA规范(用于)Steviol Glycosides一致,并被适当考虑加工辅助工具。进行的加工和纯度步骤确保去除微生物和酶的残留蛋白质和残留DNA,而不是在最终纯化的蒸汽糖苷中。所有三种酶均在申请人的Rebaudioside M的生产中一起使用。仅在上面列出的酶1和3中使用 - 用于生产申请人的Rebaudioside I.生产有机体大肠杆菌菌株K-12具有悠久的安全使用历史。产生重生M和我的衍生菌株既不是病原体也不是毒素,也不出现食品安全风险。对GM生产菌株的分析证实了插入基因的插入和稳定性。在评估三个
抽象背景铁吞作用在增强反编程细胞死亡1(PD-1)免疫疗法的功效方面起着重要作用。然而,尚未阐明肿瘤铁蛋白肿瘤对黑色素瘤和肺癌对抗PD-1免疫疗法敏感的分子机制。使用细胞毒性测定,菌落形成测定,流式细胞仪和动物实验来评估甲氟喹(MEF)(MEF)对黑色素瘤和肺癌的生存和纤维毒性的影响。RNA测序,实时定量PCR(QRT-PCR),Western印迹,染色质免疫沉淀-QPCR和流式细胞仪确定MEF调节溶血磷脂酰胆碱酰基转移酶3(LPCCAT3)的分子机制。通过临床数据库和单细胞RNA测序(SCRNA-SEQ)验证了LPCAT3与抗PD-1免疫疗法的疗效之间的关系。在这项研究中结果,我们发现MEF诱导了铁铁作用。此外,用MEF与T细胞衍生的干扰素γ(IFN-γ)联合治疗增强了肿瘤肿瘤的肿瘤,敏化黑色素瘤和肺癌细胞对抗PD-1免疫疗法。从机械上讲,MEF通过激活IFN-γ诱导的STAT1-IRF1信号传导LPCAT3(一种参与脂质过氧化的关键基因)的表达,并敲低LPCAT3损害了MEF+ifn-γ的诱导。结论总结,我们的研究证明了一种新的机制,通过该机制进行了调节,并证明MEF是一个高度有希望的新靶标,可用于增强抗PD-1免疫疗法的功效。在临床上,对黑色素瘤患者的转录组和单细胞测序的分析表明,黑色素瘤患者的LPCAT3表达明显低于对照组的患者,并且LPCAT3表达与抗PD-1免疫疗法的功效呈正相关。
摘要 在美国田纳西州橡树岭,Rhodanobacter 是受高浓度硝酸盐和铀污染的蓄水层中的优势菌属。原位刺激反硝化已被提出作为修复硝酸盐和铀污染的潜在方法。在 Rhodanobacter 种中,据报道 Rhodanobacter denitri filcans 菌株具有反硝化能力并含有丰富的金属抗性基因。然而,由于这些菌株缺乏诱变系统,我们对低 pH 抗性和在污染环境中占主导地位的能力的潜在机制的理解仍然有限。在这里,我们在两株 R. denitri filcans 菌株中开发了一种无标记缺失系统。首先,我们优化了 10 株 Rhodanobacter 菌株的生长条件,测试了抗生素抗性,并确定了合适的转化参数。然后,我们在 R. denitri filans 菌株 FW104-R3 和 FW104-R5 中删除了编码尿嘧啶磷酸核糖基转移酶的 upp 基因。所得菌株被命名为 R3_ D upp 和 R5_ D upp,并用作宿主菌株,以 5-氟尿嘧啶 (5- FU) 抗性作为反选择标记进行诱变,以产生无标记缺失突变体。为了测试开发的方案,在 R3_ D upp 和 R5_ D upp 宿主菌株中敲除了编码硝酸盐还原酶的 narG 基因。正如预期的那样,narG 突变体无法在以硝酸盐为电子受体的缺氧培养基中生长。总体而言,这些结果表明,同框无标记删除系统在两种 R. denitri ficans 菌株中有效,这将有助于未来对这些菌株进行功能基因组研究,进一步了解 Rhodanobacter 种中存在的代谢和抗性机制。
目的:确定载脂蛋白A1基因中RS121912724多态性与糖尿病血脂异常血症的关联及其与血清高密度脂蛋白胆固醇(HDL),TRIGLYCIRIDES,(TG)和低密度Lipoprotein chlestersin(ldllylesterslotol(L)的相关性。方法:服用了两组,包括150例糖尿病血脂异常(I组)患者和150个健康对照组(II组)。使用社会科学统计包26分析了人口统计学和生化数据,通过应用学生独立t检验。对两组的DNA样品进行了四个放大难治系统聚合酶链反应,并放大了RS121912724多态性的等位基因A和C。使用Fisher的精确测试和Cochran-Armitage检验研究了RS121912724多态性与该疾病的关联。使用SPSS版本27上的Pearson相关性确定了多态性和脂质水平之间的相关性。结果:HDL-C,LDL-C和TG的水平明显高于健康组(P <0.000)。纯合AA的基因型计数为137,杂合子AC的12个和1组中的1个纯合CC。在II组中,纯合AA的基因型计数为138,杂合子AC的12个,没有纯合CC。没有观察到rs121912724与糖尿病血脂异常的发展,也没有观察到rs121912724的负相关性与危险水平的HDL-C,LDL-C和TG的阴性相关性。结论:APOA1基因中的RS121912724多态性与糖尿病血脂异常无关。在HDL-C,TG和LDL-C的多态性和混乱水平之间没有发现相关性。关键字:抗炎,卵磷脂胆固醇酰基转移酶,四臂PCR,2型糖尿病
植食性昆虫已经进化出复杂的解毒系统来克服许多植物产生的抗食草动物化学防御。然而,这些生物转化系统在通才和专才昆虫物种中有何不同,以及它们在确定昆虫宿主植物范围方面的作用仍是一个悬而未决的问题。在这里,我们表明 UDP - 葡萄糖基转移酶 (UGT) 在确定 Spodoptera 属内昆虫物种的宿主范围方面起着关键作用。对宿主植物宽度不同的 Spodoptera 物种进行比较基因组分析,发现在通才物种中 UGT 基因数量相对保守,但在专才 Spodoptera picta 中 UGT 基因假基因化水平较高。CRISPR - Cas9 敲除 Spodoptera frugiperda 的三个主要 UGT 基因簇表明,UGT33 基因在使该物种利用禾本科植物玉米、小麦和水稻方面发挥重要作用,而 UGT40 基因促进棉花的利用。进一步的体内和体外功能分析表明,UGT SfUGT33F32 是使广谱 S. frugiperda 能够解毒苯并恶嗪类化合物 DIMBOA(2,4-二羟基-7-甲氧基-2H-1,4-苯并恶嗪-3(4H)-酮)的关键机制,DIMBOA 是由禾本科植物产生的强效杀虫毒素。然而,虽然这种解毒能力在几种广谱 Spodoptera 物种中得到了保留,但专食文殊兰植物的 Spodoptera picta 因 SpUGT33F34 的非功能性突变而无法解毒 DIMBOA。总之,这些发现为了解昆虫 UGT 在宿主植物适应中的作用、广谱和专谱之间进化转变的机制基础提供了见解,并为控制一组臭名昭著的害虫提供了分子目标。
摘要:背景:骨质疏松症 (OP) 是一种影响全球老年人的常见骨病。确定可靠的诊断标记对于 OP 的临床管理至关重要。方法:利用 GEO 数据库 (GSE35959),我们获取了 OP 和正常样本的表达谱。通过 STRING、GEO2R 和 Cytoscape 确定差异表达基因 (DEG) 和中心基因。使用 miRTarBase、miRDB 和 MiRcode 数据库构建竞争内源 RNA (ceRNA) 网络。通过 DAVID 进行基因本体论 (GO) 和 KEGG 通路富集分析。验证涉及来自巴基斯坦人群的临床 OP 样本,使用实时定量聚合酶链反应 (RT-qPCR) 评估中心基因表达。结果:在 GSE35959 中,OP 和正常样本之间共鉴定出 2124 个差异表达基因 (DEG)。这些 DEG 中选定的枢纽基因是剪接因子 3a 亚基 1 (SF3A1)、Ataxin 2 样 (ATXN2L)、热休克蛋白 90 Beta 家族成员 1 (HSP90B1)、分化簇 74 (CD74)、DExH-Box 解旋酶 29 (DHX29)、ALG5 多萜醇磷酸 β-葡萄糖基转移酶 (ALG5)、NudC 结构域含 2 (NUDCD2) 和 Ras 相关蛋白 Rab-2A (RAB2A)。在巴基斯坦 OP 患者中对这些基因的表达验证显示,在 OP 患者中,SF3A1、ATXN2L 和 CD74 显着上调,而 HSP90B1、DHX29、ALG5、NUDCD2 和 RAB2A 显着 (P <0.05) 下调。受试者工作特征(ROC)分析显示这些枢纽基因对OP的诊断准确率较高。枢纽基因的ceRNA网络分析揭示了一些重要的枢纽基因调控miRNA和lncRNA。通过KEGG分析发现,枢纽基因在N-糖生物合成、甲状腺激素合成、IL-17信号通路、前列腺癌、AMPK信号通路、剪接体、雌激素信号通路、流体剪切应力和动脉粥样硬化等通路中富集。结论:本研究鉴定出的8个枢纽基因可以可靠地区分OP患者和正常个体,这可能为OP的诊断研究提供新的思路。
完整的处方信息1指示和用法Roctavian是一种基于腺相关病毒载体的基因疗法,用于治疗患有严重血友病A的成年人(先天性因子VIII缺乏,VIII因子VIII活性<1 IU/DL)而无需抗adeno搭配的Virussepype 5(Anavrappaimed Virus sestype)。2剂量和给药一次性单剂量静脉用途。用roctavian治疗应受到治疗血友病和/或出血疾病的医生的监督。用于患者选择•使用FDA批准的伴侣诊断进行测试,以对AAV5进行预先存在的抗体。不要为对AAV5抗体的阳性测试的患者进行Roctavian。有关FDA批准的测试的信息,可在以下网址提供:http://www.fda.gov/companiondiangnostics。•执行VIII抑制剂滴度测试[请参阅特定种群中的使用(8.7)和临床药理学(12.6)]。不要向因子VIII抑制剂进行阳性测试的患者施用roctavian。•进行肝健康评估,其中包括:•肝功能测试[丙氨酸氨基转移酶(ALT),天冬氨酸氨基转移酶(AST),γ-谷氨酰基转移酶(GGT),碱性磷酸酶(ALP),全胆红素和国际正常化的评估(Inrastripation(INRAS))放射肝异常和/或肝功能测试异常(ALT,AST,GGT,ALP或总胆红素> 1.25×ULN或INR≥1.4),请考虑与肝病学家进行协商以评估Roctavian的资格。•评估患者接受皮质类固醇和/或其他免疫抑制治疗的能力,这可能是长时间的[参见剂量和给药(2.3)]。确保个别患者可以接受与免疫抑制相关的风险。•请勿为活性急性或不受控制的慢性感染,已知明显的肝纤维化(Batts-ludwig量表或同等学历)或肝硬化的患者进行roctavaian,或者在特定群体中使用(4),已知的肝纤维化(阶段3或4阶段)或cir骨高度超敏。