摘要 。橡胶蒲公英 ( Taraxacum kok-saghyz ) 是一种天然产橡胶的蒲公英,具有成为工业作物的潜力。菊粉是橡胶蒲公英中的储存碳水化合物,其合成与橡胶生产竞争同化碳。我们使用成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 (Cas) 系统同时靶向编码 1-果聚糖的基因中的两个位点:果聚糖-1-果糖基转移酶基因 (1-FFT),这是菊粉生物合成中的关键酶。使用发根农杆菌和根癌农杆菌介导的植物转化方法产生具有 CRISPR/Cas9 元件的转基因植物。通过 A 的转化率分别为 71% 和 64%。 rhizogenes 和 A. tumefaciens 介导的转化分别对转基因橡胶蒲公英和根癌农杆菌介导的转化进行了研究。通过限制性位点丢失法和桑格测序证实了诱变。在通过 A. rhizogenes 获得的 13 株转基因植物中,有 6 株显示 1-FFT 基因内的两个靶位点均进行了编辑。使用 A. rhizogenes 介导的转化在 10 周内获得了转基因橡胶蒲公英植物,这比 A. tumafaciens 转化子所需的 6 个月要快得多。在通过 A. tumefaciens 获得的 11 株转基因植物中,有 5 株在两个靶位点都发生了突变。逆转录聚合酶链式反应证实了所有编辑转化子中 Cas9 的表达。A. rhizogenes 介导的双突变转化子和 A. tumefaciens 介导的双突变转化子的菊粉含量都低于野生型植物。此外,A. rhizogenes 介导的转化体的橡胶含量高于野生型植物。因此,本研究验证了使用 CRISPR/Cas9 基因编辑作为橡胶蒲公英中产生有用突变的有效工具,并且可以在未来的作物改良方法中实施。
经过近四十年的试验,治疗骨肉瘤 (OS) 转移一直没有显著的疗效。这促使我们利用其四个双向突变阶段阐明骨肉瘤疗法。简要介绍了历史发展和临床进展,以刷新骨肉瘤治疗的现状。然而,转移的主要问题仍未解决,占肺转移死亡的 90%。因此,这个转移问题与长期免疫治疗肿瘤后引起的免疫逃逸和化学耐药有关。因此,讨论突变阶段的关系周期是合理的,包括肿瘤发生、转移、免疫逃逸和化学耐药。尽管已经开发了许多组合和靶向疗法来强化这些突变治疗,但具有更高治愈率的成功临床转化仍然很少。通过这篇综述,深入了解了四个骨肉瘤突变阶段与其各自疗法之间的双向关系。在此,我们总结了治疗肿瘤发生的药物,包括胶原β(1-O)半乳糖基转移酶2抑制剂、转化因子2β、具有GTPase结构域1的ArfGAP、miR-148a和miR-21-5p胞外囊泡和长链非编码RNA白血病抑制因子受体反义RNA1。接下来治疗转移的药物是AXL受体酪氨酸激酶、miR-135a-5p、信使RNA B细胞淋巴瘤-6、转化生长因子β1、T细胞免疫球蛋白和粘蛋白结构域蛋白-3、细胞因子信号传导抑制因子-5、癌症易感性15、Krüppel样因子3反义RNA 1、程序性细胞死亡4、自噬相关基因5和Rab22a-NeoF1。其次治疗免疫逃逸的药物有N-cadherin、泛素特异性肽酶12抑制剂、潜伏期相关肽域抑制剂、抗Wnt2 mAb、抗αvβ8整合素、己糖激酶-2介导的i-κ-b-alpha、吲哚胺2,3-双加氧酶抑制剂与NO、TGF-βRII与抗IgG1。最后治疗化疗耐药的药物有二氢叶酸还原酶、叶酰多聚-γ-谷氨酸合成酶、热休克蛋白-90AA1、XCT-790、安罗替尼酪氨酸激酶抑制剂、胰岛素样生长因子1。希望本文能为科学家和临床医生提供参考和指导。
糖尿病是一种常见的慢性代谢疾病,其特征是持续性高血糖,全球患病率不断增加。到2045年,全世界有7.83亿成年人估计患有糖尿病(1),2型糖尿病(T2D)的占糖尿病(T2D)的占90%(2)。长期高血糖状态可能会增加发生威胁生命的糖尿病并发症的风险,例如心血管和糖尿病肾脏疾病(3,4)。因此,识别T2D风险因素对于早期干预和疾病发作的延迟很重要。肝脏在控制葡萄糖稳态中起着重要作用。最常见的慢性肝病是非酒精脂肪肝病(NAFLD),其特征是肝细胞中脂肪的积累过多,与T2D风险有关(5,6),可能会因肝酶增加而反射。循环肝酶,例如丙氨酸氨基转移酶(ALT),γ-谷氨酰基转移酶(GGT)和天冬氨酸氨基转移酶(AST),是肝脏异常的无创生物标志物。Alt主要位于细胞质中,是肝损伤的最特殊标记。此外,ALT与肝脂肪的积累(7)和肝胰岛素抵抗(8)有关,并且在流行病学研究中已被用作NAFLD的替代标记(9,10)。GGT存在于大多数细胞类型的表面上,被广泛用作过度酒精摄入和肝功能障碍的指标。此外,最近的研究表明,GGT与代谢综合征的成分有关,例如肥胖(11),血脂异常(12)和高血压(13)。AST是一种参与肝损伤的非特生肝酶,肝细胞线粒体中存在肝脏中的80%的AST。严重的肝细胞损伤导致血清AST水平显着升高(14)。研究研究了肝酶与T2D风险之间的关联。但是,结果是有争议的。几项研究表明,ALT,AST和GGT增加了T2D的风险(15,16),而几项研究表明,只有ALT和GGT是T2D的危险因素(17-20)。一项包括1441个具有7年随访的人的研究表明,单独的AST是多变量调整后T2D的独立危险因素(21)。考虑到中国的T2D患者数量最多(1),只有少数研究调查了中国人群中肝酶与T2D风险之间的关联,尤其是其潜在的剂量反应关系。此外,肝酶的分布在不同人群之间可能有所不同(22,23),这种差异是否转化为肝酶与T2D风险之间剂量反应关系的差异仍然未知。在这项研究中,我们利用了来自中国的大规模体格检查数据来研究肝酶(ALT,AST和GGT)和T2D风险之间的关联,尤其是其剂量反应关系。此外,分析了英国生物库和国家健康与营养检查调查(NHANES)数据集,以确定剂量反应是否
发明说明CD47-SIRPα“ do-not-eat-me”信号轴是髓样特异性的先天免疫检查点。癌细胞在细胞表面表达CD47,使它们能够通过先天免疫系统逃避检测,从而避免巨噬细胞破坏。抑制CD47-SIRPα轴触发巨噬细胞的吞噬作用。谷氨酰胺基肽蛋白基转移酶样蛋白(QPCTL或ISOQC)是一种高尔基居住的酶,可催化N端谷氨酰胺和靶蛋白上N-末端谷氨酰胺和谷氨酸残基的环化为吡格豪拉氨酸酯残基(PGLU)。CD47上焦谷氨酸对SIRPα结合很重要。 我们已经在亚纳摩尔范围内鉴定出具有ISOQC抑制活性的有效ISOQC抑制剂。 DBPR22998显着降低了抗CD47抗体在细胞表面的结合,并防止了人类SIRPα-FC与细胞表面CD47在实体瘤和测试的血液学癌细胞系中的相互作用。 此外,DBPR22998与抗CD20抗体利妥昔单抗结合使用,增强了人类B细胞淋巴瘤细胞中抗体依赖性细胞吞噬作用。 体内,与单独的抗体肿瘤模型中的固体肿瘤模型和血液学癌症相比,与单独的抗体相比,抗体疗法诱导肿瘤消退的口服DBPR22998诱导肿瘤消退,平均生存时间延长。 DBPR22998在小鼠和大鼠中具有出色的药代动力学特性和良好的口服吸收(F> 30%)。焦谷氨酸对SIRPα结合很重要。我们已经在亚纳摩尔范围内鉴定出具有ISOQC抑制活性的有效ISOQC抑制剂。DBPR22998显着降低了抗CD47抗体在细胞表面的结合,并防止了人类SIRPα-FC与细胞表面CD47在实体瘤和测试的血液学癌细胞系中的相互作用。此外,DBPR22998与抗CD20抗体利妥昔单抗结合使用,增强了人类B细胞淋巴瘤细胞中抗体依赖性细胞吞噬作用。体内,与单独的抗体肿瘤模型中的固体肿瘤模型和血液学癌症相比,与单独的抗体相比,抗体疗法诱导肿瘤消退的口服DBPR22998诱导肿瘤消退,平均生存时间延长。DBPR22998在小鼠和大鼠中具有出色的药代动力学特性和良好的口服吸收(F> 30%)。
简介 肝脏中脂质的代谢、储存和流动在饥饿、饮食引起的肥胖、糖尿病和非酒精性脂肪性肝炎 (NASH) 中起着核心作用。肝脏在从头脂肪生成的主要位点和脂质氧化的主要位点之间切换时,脂质代谢的动态范围非常大。脂质合成、吸收、输出和氧化的平衡在代谢综合征的进展和发病机制中起着至关重要的作用,对于脂肪肝和 NASH 的发病率不断上升尤为重要。然而,就脂质代谢的作用而言,控制从正常代谢生理向病理生理转变的机制尚不清楚。从头合成或从饮食中吸收的脂肪酸以甘油三酯 (TG) 的形式储存在脂质滴中,并在能量不足时被动员起来,为线粒体的氧化代谢提供脂肪酸。在大多数情况下,甘油三酸酯水解酶脂肪甘油三酸酯脂肪酶 (Atgl;也称为 Pnpla2、desnutrin) 会调节甘油三酸酯从甘油三酸酯中释放脂肪酸 (1, 2)。Atgl 是甘油三酸酯水解中的第一个速率设定酶 (1–3),Atgl 或其辅激活剂 Cgi-58 的突变会导致人类中性脂质储存病 (4, 5)。这些疾病以及小鼠中 Atgl 的完全丧失会导致线粒体脂肪酸氧化缺陷。无法调动甘油三酸酯会导致线粒体缺乏脂肪酸并限制氧化代谢。此外,甘油三酸酯水解缺陷已显示表现出显著的转录缺陷 (3, 6–10)。也就是说,脂肪酸从脂质滴中释放是 Ppar α 介导的脂肪酸氧化转录编程调节的重要调节因子。因此,Atgl 对于提供脂肪酸氧化的底物和协调维持脂肪酸氧化所需的转录程序都很重要。脂肪酸在线粒体中被氧化,为肝细胞提供 ATP 和 NADH,以促进糖异生并产生乙酰辅酶 A,即生酮作用的碳底物。这使得肝脏能够缓冲血糖并在食物匮乏期间为高度氧化的组织提供替代燃料(酮体)。脂肪酸氧化在许多生物过程中的重要性从导致人类疾病的该途径中的多个突变中可以看出(11)。长链脂肪酸 β 氧化受活性脂肪酸(酰基辅酶 A)从细胞质到线粒体基质的受控易位控制。这是由连续的酰基转移酶肉碱棕榈酰转移酶 1 和
我们通过 CRISPR–Cas9 编辑 12 个优良玉米自交系中的蜡质等位基因,创造了蜡质玉米杂交种,这一过程比使用回交和标记辅助选择的传统性状基因渗入快了一年多。在 25 个地点进行的田间试验表明,CRISPR-蜡质杂交种在农艺上优于基因渗入杂交种,平均每英亩产量高出 5.5 蒲式耳。玉米蜡质基因 (Wx,也称为 Wx1) 编码一种颗粒结合的 NDP-葡萄糖-淀粉葡萄糖基转移酶,该酶负责延长直链淀粉中葡萄糖聚合物的线性链 1。野生型 (WT) 种子淀粉由~25% 直链淀粉和~75% 支链淀粉组成,而功能丧失的 wx 突变种子淀粉则由~100% 的支链淀粉组成,这使胚乳具有像蜡烛一样暗淡而光滑的外观 2 ,因此得名“糯玉米”。糯玉米淀粉用于造纸和粘合剂工业,并在食品工业中用作稳定剂和增稠剂 3 。美国每年在约 500,000 英亩的土地上生产约 8000 万蒲式耳糯玉米。有~200 个 wx 突变等位基因是自发产生的,通过随机诱变产生的,或通过非优良品系中的 CRISPR-Cas 靶向诱变产生的 4,5 。其中,wx-C 等位基因是现代商业糯玉米杂交种中使用最广泛的 wx 供体。商业化糯玉米杂交种是通过将 wx 突变基因渗入优良自交系而开发的。基因渗入通常需要与轮回亲本回交六到七代并自交才能获得用于商业化杂交生产的自交系。糯玉米杂交种的产量比对应的非糯玉米杂交种低约 5% 3 。产量降低的原因尚不清楚;可能是由于性状基因渗入造成的连锁累赘或 wx 突变导致的淀粉性质改变。使用 CRISPR-Cas9 进行基因组编辑和改进的转化技术 6 – 9 有可能缩短糯玉米杂交种的上市时间并消除回交过程中出现的连锁累赘。我们报道了使用 CRISPR-Cas9 和形态发生基因直接在 12 个优良玉米自交系中产生糯玉米缺失等位基因并进行多点产量测试的情况,所有这些过程耗时三年,这比基因渗入方法快得多。使用图 1a 中概述的策略,在优良自交系中生成了两个蜡质缺失等位基因,即 4 千碱基 (kb) 和 6 kb 缺失。为了在自交系 PH184C 中生成 4 kb 缺失系,将编码基因组编辑试剂 (指导对 CR1/CR3 和 Cas9;补充图 1) 的 DNA 引入未成熟胚胎中
摘要:糖基转移酶(GTS)几乎存在于所有生物体中;植物,动物和微生物。gts将糖分子从核苷酸糖转移到包括激素,继发代谢产物,生物和非生物化学物质在内的各种分子。当糖基转移酶在任何分子中添加糖部分时,该分子的亲水性会改变,从而改变分子的化学特性。这种现象对于适当的活生物体工作至关重要。首次报道了噬菌体T4-葡萄糖基转移酶的X射线结构。在细菌中,GTS在各种生物学过程中起着重要作用,例如细胞壁生物合成,表面糖基化和毒力因子的产生。在细菌中报道了点突变以及域交换。序列变化以及整个细胞也已在细菌中进行了设计。gts在生存,生长,发育,代谢,解毒,抗杀虫剂的形成,化学敏感,防御和免疫力中起着非常重要的作用,参与了各种信号通路等。在植物中,糖基转移酶在细胞壁成分,次生代谢产物和信号分子的生物合成中起着至关重要的作用。gts参与糖部分从活化的供体分子转移到特定的受体分子,导致形成糖苷键。gts修改类黄酮,生物碱和萜类化合物等。GT对植物稳态有直接影响。有针对性的诱变已通过现场带有糖残留物并改变这些化合物的溶解度,稳定性和生物活性,并调节植物防御机制以及与昆虫,微生物和其他生物的相互作用。UGT或GTS中定向诱变(SDM)的位点导致底物特异性的变化,并在催化活性GT中增加或总损失。这种变化表明,底物特异性的变化可能会导致更好的糖基化和UGT的抗癌活性。gts还参与了植物激素的糖基质,并调节其代谢和信号通路。gts参与了这些激素的活动,稳定性和运输,并影响植物的生长,发育和对各种环境刺激的反应。Four UGT families encoding 200 genes are reported in humans which regulate cell signaling, protein folding, immune response, growth and development, detoxification, metabolism and elimination of drugs, DNA methylation and histone modifications, transcriptional regulation, post-transcriptional regulation and post-translational regulation, synthesis of human blood group antigens A and B and recently GTs are also reported as linked with COVID-19与气味或味道的丧失。已经开发了各种生物信息学工具,这些工具将有助于使用任何参考酶在GTS的结构中进行分析。可以在进行体外分析(例如诱变)之前进行活性和有序结构以及各种稳定性测定。
植物基因编辑可对植物进行有针对性的改造,在作物的基因功能分析和精准育种方面显示出巨大的潜力[1]。要生产基因编辑植物,需要将基因编辑试剂[2](例如 CRISPR/Cas9 成分)递送到植物细胞中。这涉及一个漫长、昂贵且劳动密集型的组织培养步骤,而且目前仅在有限数量的植物物种中可行,这成为植物基因编辑的主要瓶颈。在最近一期的《自然生物技术》上,由 Daniel F. Voytas 领导的明尼苏达大学研究小组描述了一种生产基因编辑植物的新方法,同时避免了组织培养的需要(图 1)[3]。该方法利用了分生组织的从头诱导。分化的植物细胞通常不能分裂或产生不同类型的细胞。然而,之前的研究表明,通过异位表达特定的发育调节因子,可以诱导已经分化的细胞形成分生组织。分生组织是包含未分化干细胞(分生细胞)的植物组织,这些干细胞能够进行细胞分裂,并能产生各种组织和器官。例如,在拟南芥中,WUSCHEL ( WUS ) 基因在胚胎发生中起着关键作用,过表达 WUS 可以促进营养生长向胚胎生长的转变 [ 4 ] 。SHOOT MERISTEMLESS ( STM ) 和 WUS 的联合异位表达可激活拟南芥中的一组分生组织功能,包括细胞分裂和器官发生 [ 5 ] 。 ipt 基因位于土壤细菌农杆菌的 Ti 质粒上,该基因编码异戊烯基转移酶,这种酶在植物中诱导细胞分裂素的生物合成,从而刺激器官发生[6]。在单子叶植物中,婴儿潮基因(Bbm)和 WUS 基因的过度表达可促进体细胞形成胚胎,从而提高转化效率[7]。Voytas 研究小组假设分生组织可以在发育调节因子的帮助下诱导。为了验证这一想法,使用多种启动子以不同的组合在本氏烟植物中表达了玉米 WUS2、拟南芥 STM、农杆菌 ipt 和其他发育调节因子。农杆菌用于传递转基因,并以荧光素酶作为报告基因。形成了分生组织状结构,这些结构长成具有荧光素酶表达的转基因植物,并且发现该特性是可遗传的。然后,使用相同的方法,将针对两个测试基因的单个向导 RNA (sgRNA) 与成功组合的发育调节剂一起引入组成性表达 Cas9 的转基因本氏烟叶中。在产生的芽中,可以验证目标基因的编辑,并且发现突变会传递给下一代。随后出现了一个问题,即在土壤中生长的植物上是否也能诱导分生组织。这种方法确实在许多双子叶植物中被证明是成功的,除了本氏烟草,在马铃薯和葡萄中也是如此。此外,还产生了基因编辑的本氏烟草植物,并且发现一些编辑过的植物不含有用于编辑的转基因。从头分生组织诱导方法被称为 Fast-TrACC(快速处理的农杆菌共培养),与传统的组织培养程序相比具有明显的优势(图 1)。首先,它大大缩短了生产基因编辑植物所需的时间,从几个月缩短到几周。其次,Fast-TrACC 不需要无菌条件,并且适用于在土壤中生长的植物。组织培养方法要求使用无菌工作台和无菌培养基,因此无组织培养方法需要的资源更少,并且适用于较小的群体。第三,当 Cas9 与 sgRNA 一起递送时,在某些情况下会产生基因编辑植物
1.Patil G 、Patel R、Jaat R、Pattanayak A、Jain P、Srinivasan R. (2009) 谷氨酰胺改善鹰嘴豆 (Cicer arietinum L.) 芽形态发生 Acta Physiologiae Plantarum 。1;31(5):1077-84。2.Patil G 、Deokar A、Jain PK、Thengane RJ 和 Srinivasan R (2009) 开发基于磷酸甘露糖异构酶的农杆菌介导鹰嘴豆 (Cicer arietinum L.) 转化系统 Plant Cell Reports , 28 (11), pp.1669-1676。3.Patil G, Nicander B (2013) 在小立碗藓中鉴定出 tRNA 异戊烯基转移酶家族的另外两个成员。植物分子生物学。1;82(4- 5):417-26。4.Deshmukh R, Sonah H, Patil G , Chen W, Prince S, Mutava R, Vuong T, Valliyodan B 和 Nguyen HT (2014) 整合组学方法,提高大豆对非生物胁迫的耐受性。植物科学前沿,5,第 244 页。5.Patil G、Valliyodan B、Deshmukh R、Prince S、Nicander B、Zhao M、Sonah H、Song L、Lin L、Chaudhary J、Liu Y、Nguyen H (2015) 大豆 (Glycine max) SWEET 基因家族:通过比较基因组学、转录组分析和全基因组重测序分析获得的见解。BMC Genomics,16 (1),第 520 页。6.Chen W, He S, Liu D, Patil GB , Zhai H, Wang F, Stephenson TJ, Wang Y, Wang B, Valliyodan B 和 Nguyen HT (2015) 甘薯香叶基香叶基焦磷酸合酶基因 IbGGPS 可增加拟南芥的类胡萝卜素含量并增强其渗透胁迫耐受性。PLoS One , 10 (9) 7.Prince SJ, Joshi T, Mutava RN, Syed N, Vitor, M, Patil G, Song L, Wang J, Lin L, Chen W, Shannon JG, Nguyen H (2015) 大豆品系抗旱转录组的比较分析,以对比冠层萎蔫。植物科学,240,第 65-78 页。8.Chaudhary、Patil GB、Sonah H、Deshmukh RK、Vuong TD、Valliyodan B 和 Nguyen HT (2015) 扩大组学资源以改善大豆种子组成性状。植物科学前沿,6,第 1021 页。9.Syed N、Prince S、Mutava R、Patil G*、Li S、Chen W、Babu V、Joshi T、Khan S 和 Nguyen H,(2015) 核心时钟、SUB1 和 ABAR 基因通过大豆中的可变剪接介导洪水和干旱反应。《实验植物学杂志》,66 (22),第 7129-7149 页。10.Prince SJ、Song L、Qiu D、dos Santos J、Chai C、Joshi T、Patil G、Valliyodan B、Vuong TD、Murphy M 和 Krampis K (2015) 大豆种质中根结构相关基因的遗传变异,是改良栽培大豆的潜在资源。11.12.BMC 基因组学,16 (1),第 132 页。Sonah H、Chavan S、Katara J、Chaudhary J、Kadam S、Patil G 和 Deshmukh R (2016) 谷物中木聚糖酶抑制蛋白 (XIP) 基因的全基因组鉴定和表征。Indian J. Genet。Plant Breed,76,第 159-166 页。Asekova S、Kulkarni K、Patil G、Kim M、Song J、Nguyen HT、Shannon J 和 Lee J (2016) 野生 (G. soja) 和栽培 (G. max) 大豆杂交种芽鲜重的遗传分析。Molecular Breeding,36 (7),第 103 页。13.Song L, Nguyen N, Deshmukh R, Patil GB , Prince S, Valliyodan B, Mutava R, Pike S, Gassmann W 和 Nguyen H, (2016) 大豆 TIP 基因家族分析和
缩写:5-FU,5-氟尿嘧啶;AA-CoA,花生四烯酸辅酶 A;ABCC1,ATP 结合盒,C 亚家族(CFTR/MRP),成员 1;ACC,无定形碳酸钙;ACLS4,酰基辅酶 A 合成酶家族 4;AdA-CoA,肾上腺酸辅酶 A;ALDH,醛脱氢酶;AML,急性髓细胞白血病;APC,抗原处理细胞;ARE,抗氧化反应元件;ART,青蒿素;BAX,BCL-2 相关 X 蛋白;BCL-2,B 细胞淋巴瘤 2;BTIC,脑肿瘤起始细胞;CBR,临床受益率;CLL,慢性淋巴细胞白血病;CNSI-Fe(II),碳纳米颗粒负载铁;CQ,氯喹;CRPC,去势抵抗性前列腺癌; CSC,癌症干细胞;CTL,细胞毒性 T 淋巴细胞;CuET,二乙基二硫代氨基甲酸铜 (II);DAMP,损伤相关分子模式;DFO,去铁胺;DHA,双氢青蒿素;DLAT,丙酮酸二氢硫酰赖氨酸残基乙酰转移酶成分;DMT1,二价金属转运蛋白 1;DOX,阿霉素;DRD2,多巴胺 D2 受体;DSF,双硫仑;EGFR,表皮生长因子受体;EMT,上皮-间质转化;ER,内质网;ETO,依托泊苷;FDX1,铁氧还蛋白 1;FER-1,铁抑制蛋白 1;FMN,基于框架的纳米剂;FPN1,铁转运蛋白 1;FTH1,铁蛋白重链 1; FTL1,铁蛋白轻链 1;GPX4,谷胱甘肽过氧化物酶 4;GSH,谷胱甘肽;GSS,谷胱甘肽合成酶;H 2 O 2,过氧化氢;HNC,头颈癌;HO-1,血红素加氧酶-1;ICD,免疫细胞死亡;ICIs,免疫检查点抑制剂;IDH1,异柠檬酸脱氢酶 1;IFN-γ,干扰素-γ;IREB2,铁反应元件结合蛋白 2;IREs,铁反应元件;IRP-2,铁调节蛋白 2;IRPs,铁调节蛋白;JAK,Janus 酪氨酸激酶;KEAP1,kelch 样 ECH 相关蛋白 1;KRAS,Kirsten 大鼠肉瘤病毒致癌基因同源物;LA,硫辛酸; LC3II,微管相关蛋白 1 轻链 3α;LDH,乳酸脱氢酶;LiMOFs,锂基金属有机骨架;LIPRO-1,利普司他丁 1;LOX,脂氧合酶;LPCAT3,溶血磷脂酰胆碱酰基转移酶 3;MDA,丙二醛;MFC-Gem,载吉西他滨的碳质纳米粒子;MGMT,甲基鸟嘌呤甲基转移酶;MMNPs,磁性介孔二氧化硅纳米粒子;MMP-2,金属蛋白酶-2;MnFe 2 O 4 ,锰铁氧体;mRNAs,信使 RNA;NEPC,神经内分泌前列腺癌;NF- κ B,活化 B 细胞的核因子 κ 轻链增强子;NFS1,半胱氨酸脱硫酶;NK,自然杀伤细胞; NOX,NADPH 氧化酶 1;NRF2,核因子红细胞 2 相关因子 2;NSCLC,非小细胞肺癌;OC1,耳蜗毛细胞;OS,总生存率;P62,隔离小体 1;PET,正电子发射断层扫描;P-GP,P-糖蛋白;PCC,持久癌细胞;PCN(Fe) MOFs,Fe 3 + 卟啉金属有机骨架上的 PEG;PD-L1,程序性死亡配体 1;PDAC,胰腺导管腺癌;PEG,聚乙二醇;PGE2,前列腺素 E2;PGRMC1,孕酮受体膜成分 1;PHPM,ROS 敏感聚合物;PTX,紫杉醇;PUFA,多不饱和脂肪酸;PUFA-OOH,磷脂多不饱和脂肪酸过氧化物;RIPK-1/2/3,受体相互作用丝氨酸/苏氨酸蛋白激酶 1/2/3;ROS,活性氧;RR,反应率;siRNA,小干扰 RNA;siSLC7A11,SLC7A11 siRNA;SLC3A2,溶质载体家族 3 成员 2;SLC40A1,溶质载体家族 40 成员 1;SLC7A11,溶质载体家族 7 成员 11;STAT1,信号转导和转录激活因子 1;TAM,肿瘤相关巨噬细胞;TCA,三羧酸循环;TFR,转铁蛋白受体;TME,肿瘤微环境; TMZ,替莫唑胺;TP53,细胞肿瘤抗原 p53;TRADD,肿瘤坏死因子受体 1 型相关死亡结构域蛋白;TTP,进展时间;US FDA,美国食品药品管理局;UTRs,非翻译区;VDAC,电压依赖性阴离子通道;xCT,谷氨酸-胱氨酸反向转运蛋白;Z-VAD-FMK,羧苄氧缬氨酰丙氨酰天冬氨酰-[O-甲基]-氟甲基酮;γ-GCS,γ-谷氨酰半胱氨酸合成酶。 * 通讯作者。电子邮箱地址:mateusz.kciuk@biol.uni.lodz.pl (M. Kciuk)。