用于在 PWB 中嵌入电容器的材料 Kazunori Yamamoto、Yasushi Shimada、Yasushi Kumashiro 和 Yoshitaka Hirata 日立化学株式会社 日本茨城县下馆 摘要 我们开发了一种名为 MCF-HD-45 的新型树脂涂层箔 (RCF) 材料,可嵌入 PWB 中构成电容器。该材料由热固性树脂和高介电常数 (Dk) 填料组成。填料具有多峰尺寸分布以实现高负载;特定的表面活性剂对于保持填料在清漆中的分散稳定性也至关重要。这些技术使这种材料具有 45 的高 Dk 和出色的可靠性。本文介绍了该材料应用于手机功率放大器模块和低通滤波器的测试结果,以及数据库对高频电路仿真的好处。简介 近年来,手机等无线设备的性能大大提高,尺寸也减小了。这种趋势推动了 RF 模块小型化技术的发展。以前,人们采用较小的半导体和无源器件来实现这一目的。然而,为了进一步减小尺寸,人们正在积极研究在 PWB 中嵌入无源和有源器件的技术。关于使用低温共烧陶瓷 (LTCC) 或硅作为基板的嵌入式无源器件的报道很多。如今,人们正在积极研究将有机基板用作此目的的基板,1-5 因为它们的热膨胀系数 (CTE) 与主板相匹配,并且易于扩大基板尺寸。如果现有的有机基板制造工艺适合嵌入无源器件,它们将具有巨大的成本效益优势。如今,模拟技术对于 RF 模块的电路设计非常重要。然而,适用于 PWB 中嵌入式无源器件的电路设计的数据库很少。电路设计师、PWB 制造商和材料供应商之间的合作将是必要的,以激活嵌入式无源技术。实验部分以改性环氧树脂为高分子材料,以Dk=1500的钛酸钡(BaTiO 3)为高Dk填料,选择适当的溶剂将各组份材料配成清漆,用砂磨机混合制成均质清漆,并添加一些表面活性剂或分散剂。然后将清漆涂在典型的铜箔(3/8盎司)上,采用标准涂覆技术,得到名为MCF-HD-45的新型RCF。在此过程中,绝缘层厚度控制在20μm左右。用于可靠性测试等的试样采用传统的层压工艺制作,即在180 OC下2.5 MPa压力下放置60分钟。然后在以下条件下进行可靠性测试:85 OC/85%RH/6 V dc。电路仿真采用安捷伦科技公司的先进设计系统 (ADS) 进行。采用同一制造商的矢量网络分析仪 (VNA) 测量材料及其应用的高频特性,该分析仪配备探针台以控制台面温度。结果与讨论图 1 显示了嵌入 PWB 中的无源元件的概念。由夹在两个电极(例如铜箔)之间的聚合物复合材料制成的厚膜电容器、由薄膜和两个电极制成的薄膜电容器以及通过在基板上图案化制成的电感器可用作嵌入 PWB 中的无源元件。
A = 酸性(氧化)覆盖层;B = 碱性覆盖层;C = 纤维素覆盖层;R = 金红石覆盖层;RA(AR)= 混合金红石-酸性覆盖层;RB = 混合金红石-碱性覆盖层;RC = 混合金红石-纤维素覆盖层;RR = 金红石厚覆盖层;焊接工艺 131 和 135 使用实心焊丝时以 S 字母索引表示。根据 ISO 17632,根据成分,药芯焊丝(焊接工艺 114、133 和 136)的填料类型根据表 4.3.2.3 中的字母索引表示。
摘要:聚光太阳能能够为不同应用提供高温工艺流。一种有前景的应用是需要 800 ◦ C 以上蒸汽和空气的高温电解过程。为了克服太阳能的间歇性,需要储能。目前,这种温度下的热能主要可以作为显热存储在填料床中。然而,这种存储在几个循环后会损失可用的存储容量。为了改进这种存储,建立了一个使用空气作为传热介质的一维填料床热能存储模型,并用于研究和量化加入钙钛矿类不同热化学材料的好处。钙钛矿经历非化学计量反应延伸,可在更大的温度范围内利用热化学热。考虑了三种不同的钙钛矿:SrFeO 3 、CaMnO 3 和 Ca 0.8 Sr 0.2 MnO 3 。总共 15% 的显热储能被一种钙钛矿取代,并分析了反应材料的不同位置。研究了反应热对 15 次连续充电和放电循环中储能性能和热降解的影响。基于所选的变化和反应材料,储能容量和有用能量容量均有所增加。在储能系统冷入口/出口附近进行部分替换可将总储能容量提高 10.42%。要充分利用热化学材料的优势,合适的操作条件和材料的合适放置至关重要。
微粗糙度和低表面能防冰表面因具有超疏水和低冰亲和力而受到研究人员的极大兴趣。然而,通过模板法快速制备未开发微结构的超疏水表面 (SHS) 一直是进一步应用的瓶颈。在这项工作中,将负载石墨烯 (GP) 作为磁性纳米粒子的四氧化三铁 (Fe 3 O 4 ) 引入聚丙烯 (PP) 基质中,作为超疏水防冰/除冰表面的热载体。通过微注射成型和磁引力相结合的方法制备微结构 PP/GP/Fe 3 O 4 表面。使用多物理场耦合模型对具有磁引力的定向粒子迁移进行分析。磁引力使微柱的高度从~85 μ m 增大到~150 μ m,使表面保持较高水接触角(~153 ◦)和稳定的空气腹板,以便液滴以 1 ms-1 的初速度重复撞击。对于发育成熟的微柱,可以通过延长光路来更有效地吸收光以进行多次反射。与纯 PP 表面相比,在强度为 1 kW m-2 的一次太阳辐照下,复合材料表面的光热性能表明,温度在 67 秒内从环境温度升高到 94 ◦ C,而冰粘附强度在同期从~30 降低到~9 kPa。磁性粒子的光热功效可延长 SHS 结冰时间。由于 SHS 对室外注塑件具有出色的被动防冰和主动除冰性能,预计其将有望在制造中实际应用。
塑料几乎存在于人类活动和工业的方方面面。从塑料容器到新型纺织品和尖端技术,塑料的应用无所不包。如果不能确定塑料材料的性能,就不会有创新或新应用。通常,塑料含有两种或两种以上的聚合物以及各种添加剂和填料。这可以改善材料的可加工性、热稳定性和机械阻力,同时会极大地影响流动性能。熔融塑料的这种复杂行为、它们在受力时变形的方式以及它们的流动阻力,使得它们的应用至关重要。准确的流变测量可以更好地表征和了解塑料材料的全部特性和性能。
传统的制备方法通常采用多步组装不同活性填料含量的复合材料切片18,20或耗时的超临界二氧化碳技术19。与多层结构相比,连续变化活性填料含量可以更有效地降低反射,从而实现连续变化的阻抗。据我们所知,基于石墨烯含量连续变化的石墨烯复合材料的电磁吸波材料尚未见报道。本文提出了一种高效的电化学方法来制备石墨烯含量连续变化的还原氧化石墨烯/聚氨酯(rGO / PU)复合泡沫。该方法利用GO纳米颗粒的尺寸与其在电场中的迁移速度之间的负相关性。通过控制电泳时间来优化分布,梯度石墨烯复合材料表现出明显的电磁波各向异性反射。此外,当电磁波入射到石墨烯含量较低的表面时,整个 X 波段的反射率较低(< 30 dB),吸收率较高(> 99.5%)。 氧化石墨烯/聚氨酯 (GO/PU) 复合泡沫的制备电泳过程如方案 1 所示,设备的光学图像如图 S1 所示。将填充有氧化石墨烯溶液的 PU 泡沫放置在两个石墨电极之间,并在电极上施加 30 V 的直流电压一段时间。对于 GO 片上羧酸和酚羟基的电离,24 带负电的 GO 纳米片在外部电场下迁移到阳极。根据胶体理论,GO 的迁移速度 v 可以通过施加的电场 E
TC350™ Plus 层压板是陶瓷填充的 PTFE 基玻璃编织增强复合材料,可为电路设计人员提供经济高效、性能卓越、热性能增强的材料。这种新一代 PTFE 基层压板的热导率为 1.24W/mK,非常适合高功率微波和工业加热应用,这些应用需要更高的最高工作温度、低电路损耗和出色的电路板内散热性能。此外,与其他竞争层压板相比,所使用的先进填料系统使复合材料具有更好的机械钻孔性能。这将降低电路板制造过程中的制造成本。
我们系统地检查了多距离跳跃及其与扩展相互作用的协同作用会导致光对。对对具有较大现场排斥(𝑈)的稀释延长哈伯德模型,以及近近和下一期的邻居跳跃(𝑡'和𝑡')和吸引力(𝑉'和𝑉'),用于立方体和四方lattices。 𝑡'和𝑉'的存在促进了光对。 对于四方晶格,𝑡'<0对可以比非相互作用的颗粒更轻,并且形成了 - 对称对。 估计对bose-Einstein凝结(BEC)的紧密填料过渡温度𝑇∗,为𝑘∼〜0。 1𝑡,其中𝑡是笛卡尔轴上跳的几何平均值。 当对具有𝑑-对称性时,冷凝水具有𝑑波特性。 因此,存在𝑡'和𝑉''的存在会无处不在地导致很小的强结合对,其逆质量是线性的,这可能导致高温BEC。对具有较大现场排斥(𝑈)的稀释延长哈伯德模型,以及近近和下一期的邻居跳跃(𝑡'和𝑡')和吸引力(𝑉'和𝑉'),用于立方体和四方lattices。𝑡'和𝑉'的存在促进了光对。对于四方晶格,𝑡'<0对可以比非相互作用的颗粒更轻,并且形成了 - 对称对。估计对bose-Einstein凝结(BEC)的紧密填料过渡温度𝑇∗,为𝑘∼〜0。1𝑡,其中𝑡是笛卡尔轴上跳的几何平均值。当对具有𝑑-对称性时,冷凝水具有𝑑波特性。因此,存在𝑡'和𝑉''的存在会无处不在地导致很小的强结合对,其逆质量是线性的,这可能导致高温BEC。
(9) 反渗透 (RO) 或等效给水:RO 提供的 EDI 给水基本不含颗粒物、胶体物质和高分子量有机物,这些物质会污染离子交换介质。由于 EDI 堆栈包含离子交换介质的填料床,无法通过反冲洗/流化去除颗粒物,因此 RO 渗透水的质量是有规定的。在 RO 系统(或其他来源)和 EDI 系统(例如储罐、除碳器)之间具有开放系统的系统必须在 E-Cell EDI 堆栈之前安装过滤器,以防止其受到颗粒物的污染。通常,5 µm 绝对过滤器或 1 µm 标称过滤器是可以接受的。