分类,并为政策和工业实践提供信息。开发用于提取聚商生物降解性数据的自动化工具可以大大提高现有研究的效率,可访问性和适用性,从而加速科学的进步和实践实施。与物质领域专家合作进行的这项研究旨在促进知识整合以增强材料循环。为了支持准确的,特异性模型的开发,我们提出了PolyBD,这是一种在聚合物生物降解性上进行的进行进行的数据集。数据集由100篇研究文章组成,记录了微生物或酶和聚合物之间的相互作用。每篇文章都被手动分割成句子并在实体级别注释,捕获聚合物,细菌,真菌和酶(见图1)。为了改善域专家注释的效用,在多个层次级别注释实体。,例如,如图1所示,“粘膜杆菌”(物种)和“铬细菌”(属)均被注释。未来的注释效果将这些细菌实体与其相应的本体论条目联系起来。在关系注释过程中,聚合物“聚合物聚合物”将与属和物种水平的注释相结合,从而使对聚合物 - 细菌相互作用有全面的了解。polybd包含大量嵌套的象征 - 图1中包含的实体,例如“ Chro-mobacterium”和“ Rhizopus” - 在提取方面面临着相当大的挑战。能够解决嵌套命名实体识别(NER)的方法很少,尤其是在专用域中[5]。鉴于此任务的知识密集型性质 - 区分
增材工艺:焊接电源简介、TIG、MIG、等离子焊接工艺、应用和优点、摩擦焊接:工艺变量和应用及优点、摩擦搅拌加工、工艺变量和应用及优点、电子束焊接、激光束焊接:工艺变量和应用及优点。减材工艺:硬车削和高速铣削 - 激光加工:激光加工简介、应用和优点、激光钻孔、工艺参数对材料可加工性的影响。激光切割、激光加工的质量方面、激光微加工的应用、电火花加工。转化工艺:先进铸造:简介、搅拌铸造的原理、搅拌铸造工艺步骤、影响搅拌铸造工艺的因素:搅拌速度、搅拌时间和温度、模具预热温度、颗粒分布、增强材料和液态金属之间的润湿性和孔隙率 - 优点和应用、复合材料制备、复合材料分析、挤压铸造工艺、优点注浆铸造:原理、应用、优点和局限性。混合工艺:工艺变量、应用和优势 混合焊接工艺、混合焊接工艺(TIG 和等离子焊接等)、混合加工工艺 – ECDM、EDG、ECM 表面涂层:涂层材料、不同材料上的涂层、涂层方法及其应用、局限性。 超级合金:超级合金的性能、微观结构、熔炼和铸造实践 镍基和钴基耐热铸造合金的微观结构。 温度和时间相关转变 - 超级合金中性能与微观结构的关系。 学习资源:
他用多个章节的篇幅讨论了他的观点:教育工作者和教育心理学家进行的大部分游戏研究所使用的游戏类型和特质类别与其他学科和许多动物研究中使用的理论定义不一致。佩利格里尼的结论是,儿童研究中使用的游戏研究方法可能需要重新思考。对游戏的历史、文化和理论与研究争议感兴趣的读者将获得丰富的视角。然而,与游戏类型相关的章节的连贯性似乎不太有效,这可能是因为作者试图涵盖关于这些主题的许多不同观点。例如,在关于运动、假装、游戏和物体游戏的章节中,细节程度有所不同:章节包括一些新的和一些较旧的研究的长篇描述,而其他重要的近期研究只是简要提及或根本没有提及。有趣的是,尽管对许多研究进行了详尽的回顾,佩里格里尼并没有提到使用技术增强材料的游戏:增强假装、虚拟物体和运动游戏以及电脑游戏。关于社交游戏的章节写得特别好,它讨论了作者自己对打闹游戏的广泛研究。这个讨论似乎真的变得生动起来,它提出了一些令人信服的论点,即这种游戏是一种比说教式的“社交技能计划”更有效的社交技能教学方式。佩里格里尼在几章中提出了另一个重要观点,即游戏和人类发展的研究主要集中在幼儿生命的几年里,而不是包括后来的童年岁月。他主张有必要
在能源需求不断增长的时代,拓展可再生能源的新途径并减少化石燃料的消耗是一项挑战。收集来自太阳或工业应用散发的热量作为替代能源已成为一个重要的研究领域。热电与由于施加的温度梯度而产生的电力或由于施加的电压而产生的热流有关,它提供了在全固态转换装置中利用部分这种“免费”能源发电的潜力。热电制冷已有多种应用,与可以通过增强材料性能实现的潜在应用一样诱人。热电装置可靠,没有活动部件,不会向大气中释放有害气体。尽管具有这些吸引人的特征,但由于转换效率低,热电仍然是一个小众领域。在材料要求方面,主要的挑战是克服典型材料电性能和热性能相互关系带来的缺点。由于热电性能系数没有基本极限,材料特性没有无单位标量,材料库不断增加,热电领域正在经历对性能增强材料的新推动。寻找有用化合物的新发展,以及理论和计算建模能力的进步,使得材料评估速度更快,并通过结合理论和实验努力设计和发现新系统。我们组织了《应用物理学杂志》上的“先进热电”专题作为一个论坛,介绍该领域的最新进展和进步。我们希望这个专题能够概述热电材料研究和开发领域的现状。我们在下面仅概述了本专题中介绍的部分工作。热电在某种程度上本质上是一个材料驱动的领域。随着强大的计算资源和新型多功能技术的出现,这种关系变得更加突出
近年来,混凝土技术研究领域取得了长足的进步,其主要发展方向有两个:对卓越力学性能的不懈追求和对可持续性的日益重视(Li,2019)。在工程范式不断发展以及对能够承受极端环境和负载条件的弹性基础设施的需求不断增长的背景下,提高混凝土的力学性能对于增强现代建筑的结构完整性和安全性至关重要(Gong et al.,2023;Yu et al.,2024)。同时,工业化的不断推进产生了大量废物和副产品,这些废物和副产品通常被送往垃圾填埋场,从而加剧了空气污染并增加了碳排放。因此,开发可持续混凝土材料和结构已成为减轻环境负担和实现碳中和的关键解决方案。这种模式转变不仅符合全球应对气候变化的要求,而且为废料的创新增值利用开辟了有希望的途径。然而,高性能混凝土材料的发展之路往往充满挑战,特别是材料成本高昂以及生产过程中产生的碳排放,这阻碍了它们在结构工程中的广泛应用。为了克服这些障碍,研究人员将重点放在工业、城市和农业残余物或副产品的研究领域,探索它们作为混凝土关键成分(包括水泥基粘合剂、骨料和纤维增强材料)的部分替代品的潜力(Xiang 等人,2023 年;Merli 等人,2020 年)。通过整合废弃物,可以降低高性能混凝土的成本和碳足迹,同时促进循环经济的原则。
近年来,由于环境意识,天然纤维及其复合材料吸引了研究人员。必须识别新的纤维素纤维以进行潜在的聚合物增强。在这项研究的第一步中,从阿尔及利亚贝贾亚市山区收集的龙舌兰植物(AALLF)的叶片中提取了新的生态友好纤维素纤维,已被确定为生物 - 复合物的潜在增强材料。通过傅立叶变换红外(FTIR)光谱,Thermos Gravimetric Analysis(TGA/DTG)分析了提取的未处理和碱处理的AALLF的化学,热稳定性和机械礼节,分析了差异扫描(TGA/DTG),差异扫描卡路里量热量(DSC)和单个光纤纤维测试。在FTIR分析中,我们可以观察到在治疗的各个时间的化学处理对峰位置和强度的影响很小。热力计(TGA/DTG)和差异扫描量热法(DSC)分析有助于预测未经处理的AALLF的热行为,并建议热稳定性直至256°C,显而易见的激活能为6.14 J/g。拉伸强度,失败时的应变和Young的模量分别从单个未处理的纤维拉伸试验确定为196±41 MPa,41.45±5.98%和2756±517 MPa。其次,研究了研究纤维分数(x 1),NaOH浓度(x 2),树脂类型(x 3)和治疗时间(x 4)对聚合物生物复合材料的拉伸和弯曲性能的影响。然后使用响应表面方法(RSM)开发了生物复合材料的机械性能的数学模型。
德国橡胶技术研究所。V.(德国橡胶技术研究所)德国汉诺威* 通讯作者。电子邮件:rungsima.y@tggs.kmutnb.ac.th DOI:10.14416/j.asep.2024.09.004 收到日期:2024 年 5 月 30 日;修订日期:2024 年 7 月 4 日;接受日期:2024 年 8 月 16 日;在线发表日期:2024 年 9 月 5 日 © 2024 曼谷北部国王科技大学。版权所有。摘要天然纤维增强复合材料 (NFRC) 因其环保、价格实惠和优异的机械性能而备受关注。然而,纤维和聚合物基质之间的界面结合不足往往会导致机械和热性能较差。已经开发出各种表面处理方法,包括碱、硅烷和等离子处理,通过改性纤维表面来解决这一问题。这些处理已被证明可以改善界面结合,从而提高天然纤维增强 PA6 复合材料 (NFRC-PA6) 的机械强度和热稳定性。在本研究中,我们应用了这些表面处理并通过机械和热测试评估了它们的影响。结果表明复合材料的性能有了显著改善,尽管优化处理参数和确保均匀性等挑战仍然存在。未来的研究应侧重于克服这些挑战并探索创新处理方法,以进一步推进 NFRC-PA6 复合材料的应用。 关键词:轻型运输、天然纤维增强复合材料 (NFRC)、聚酰胺 6、表面处理 1 简介 在未来几十年内,预计作为生产塑料的原材料的石油和天然气供应将减少,从而导致对可持续和环保企业的需求 [1],[2]。天然材料,如纤维素纤维,被用作复合材料中的天然纤维增强材料,以部分替代石油基聚合物[3]。由于其成本低廉,
Ray 教授毕业于孟加拉工程学院 Shibpur 分校,并因学科第一名的成绩获得加尔各答大学金牌。他获得了印度理工学院坎普尔分校的硕士和博士学位。他从事研究工作,曾在班加罗尔国家航空实验室和德里国家物理实验室工作,后于 1978 年加入前鲁尔基大学,担任冶金和材料工程系教师。他曾在美国威斯康星大学密尔沃基分校、法国格勒诺布尔国立理工学院和德国柏林工业大学担任客座教授。他的研究兴趣包括材料开发,特别侧重于铸造金属基复合材料 (MMC)。他在铸造 MMC 方面做出了许多开创性的贡献,包括引入搅拌铸造和添加表面活性元素,他为此拥有世界上第一项专利。从那时起,Ray 教授逐渐将搅拌铸造复合材料中增强材料的尺寸从数百微米减小到纳米。与此同时,他还对锂离子电池中使用的材料产生了兴趣。他指导了 29 篇硕士论文和 34 篇博士学位论文。他发表了 200 多篇技术论文,大部分发表在国际期刊和手册上,包括 ASM 和 ASLE 的期刊和手册。由于他的研究贡献,Ray 教授获得了 MRSI 年度奖章和 Khosla 研究奖章。他是印度国家科学院和印度国家工程院院士。Ray 教授在学术机构管理方面拥有丰富的经验,曾担任过学术部门主任、主席、管理学院院长和赞助研究和工业咨询学院院长 (SRIC)。他的目标是提倡廉洁、有原则的学术生活,无所畏惧、无所偏袒地追求知识。
第五代(5G)通信时代呼唤技术革命,为我们的生活带来新变化。在材料工程领域,人们正在付出巨大努力来开发高性能的新型功能材料[1-3]。例如,开发低介电常数的电子材料对于防止5G频率的干扰至关重要[4,5]。然而,在很多情况下,降低介电常数会导致材料物理性能的下降[6]。液晶聚合物(LCP)由于其独特的分子结构而具有相对较低的粘度,并且可以借助传统的制造方法进行熔融加工[7-9]。此外,它还表现出优异的物理性能,例如高机械强度、低成型收缩率、从低温到高温的高冲击强度以及优异的耐热性[10-12]。由于这些特性,它主要用于微连接器和集成电路(IC)器件等电子零件[13-15]。然而,由于其具有高度的各向异性,因此很可能会发生较大的变形和翘曲。因此,LCP 复合材料需要采用一些增强材料,如玻璃纤维和滑石粉 [16, 17]。玻璃微胶囊是含有大量空气的空心玻璃微球 [18]。当它们嵌入到各种聚合物中时,可以减轻零件的重量 [19]。此外,它们还具有优异的绝缘性能和电阻 [20, 21]。因此,它们可以取代典型的工程填料 [22],如二氧化硅、碳酸钙和粘土。众所周知,空气的介电常数极低。这表明玻璃微胶囊内的空气有助于降低介电常数并提高物理性能 [23, 24]。海泡石是一种与玻璃纤维类似的水合硅酸镁晶须 [25, 26]。玻璃纤维的直径通常小于 10 微米 [27],而海泡石的直径为几纳米 [28]。在这方面,少量的海泡石可以产生非常积极的效果,以增强物理性能 [29]。在本研究中,我们利用挤出法制造了嵌入 LCP 复合材料中的海泡石和玻璃微胶囊
AFRP ARAMID纤维增强塑料一种基于Tri的化合物,具有钙钛矿结构,例如Bazro 3,Basno 3和Bahfo 3,短BAMO 3(M:METAR)化合物的芳香纤维纤维增强塑料的化合物。通过将这些BMO相掺入Rebco层作为杂质(人造固定中心),可以比平常获得更高的磁场特性。在PLD方法的情况下,RebCO和BMO相可以合作生长,通过沉积已提前与BMO掺杂的固体目标,并在RebCO层中形成了纳米棒形BMO相。顺便说一句,通过更改掺杂量和膜形成过程条件,可以在一定程度上更改BMO的形状和密度。 CFRP一种FRP,代表碳纤维增强塑料。 FRP是一种结合两种或多种材料的复合材料,通过将塑料(树脂)作为基础材料并将纤维添加为增强材料,可以将塑料的轻质和高成型自由结合起来,以及纤维的高刚度和强度特性。在FRP中,添加为加固材料的碳纤维称为CFRP。 FEM分析有限元法(FEM)分析。将连续对象分为有限的“元素”,使用简单的数学模型近似于每个元素的属性,并形成同时分析整体行为的方法。 FFD的电线面对面双堆叠的缩写。两条基于RE的超导电线的超导侧与焊料或类似相连。即使一根电线杆缺陷,电流也可以通过稳定层传递到另一根钢丝杆,从而增加了基于RE的超导线的产率。此外,应力中心是两条电线的中心,这使得具有高弯曲强度。 GFRP玻璃纤维增强塑料