我们表明,轨道电流可以描述Bloch状态的轨道磁矩的运输,而基于山谷电流的形式主义不适用。作为案例研究,我们认为kekulé-o扭曲的石墨烯。我们首先要详细分析频带结构,并为此模型获得Bloch状态的固有轨道磁矩算子。尽管同时存在时间反转和空间反转对称性,但仍可以定义该操作员,尽管其在给定能量下的期望值为零。尽管如此,它的存在可以通过外部磁场的应用来暴露。然后,我们继续研究这些数量的运输。在Kekulé-o扭曲的石墨烯模型中,不同山谷之间的强耦合阻止了散装谷电流的定义。然而,轨道大厅效应的形式主义以及对磁矩操作员的非亚伯式描述可以直接应用于在这些类型的模型中描述其传输。我们表明,kekulé-o扭曲的石墨烯模型表现出一个轨道大厅绝缘的轨道大厅,其高度与Intervelley耦合产生的能量带隙成反比。我们的结果增强了使用轨道霍尔效应形式主义作为山谷霍尔效应方法的最佳选择的观点。
获得“良好”电解质是用金属阳极(LI,NA等)开发新代电池的主要障碍之一。其稳定性,在传导离子(Li +,Na +,…)方面的效率迅速,大量,环境可接受和易于整合到工业制造过程中,这是决定使用材料选择的最重要标准之一。在这篇综述中,我们专门关注GO的不同用途作为电池中电解质的一部分,例如M-金属(M = Li,Na,Zn…)或钒氧化还原流量电池作为商业分离器的化学修饰;作为新分离器的组成部分;作为薄膜和保护层复合;并作为带有聚合物和凝胶电解质的固态电解质复合材料的填充物。对收集的数据的分析允许指出GO在操作电池中相应电解质的稳定性,容量和可环性的效率和相关性。审查还试图确定不同方法的优势和劣势,以突出使用在电解质生产中使用的优势和局限性。
摘要:氨基硅烯分子(HSiNH 2 ,X 1 A ′) 是不饱和氮硅烯的最简单代表,它是在单次碰撞条件下通过气相基元反应形成的,反应涉及硅基自由基(SiH)和氨(NH 3 )。反应由硅基自由基无势垒加成到氮的非键合电子对上引发,形成 HSiNH 3 碰撞复合物,然后通过从氮原子中失去氢原子,单分子分解为氨基硅烯(HSiNH 2 )。与等价氨基亚甲基卡宾 (HCNH 2 , X 1 A ′ ) 相比,通过用硅取代单个碳原子,对等价甲亚胺 (H 2 CNH) − 氨基亚甲基 (HNCH 2 ) 和氨基硅烯 (HSiNH 2 ) − 硅亚胺 (H 2 SiNH) 异构体对的稳定性和化学键产生了重大影响;例如,卡宾与硅烯的热力学稳定性逆转了 220 kJ mol − 1。因此,发现第十四主族元素硅的等价性与原子碳几乎没有相似性,不仅对反应性而且对热化学和化学键也表现出显着影响。
VER 2013 年全球有 3500 万人患有痴呆症 [1]。预计这一数字每 20 年翻一番,到 2030 年将达到 6570 万人,到 2050 年将达到 1.154 亿人 [2]。老年痴呆症最常见的原因是阿尔茨海默病 (AD),目前全球有超过 1700 万患者 [3]。AD 通常与错误折叠蛋白质(如淀粉样蛋白-β (Aβ) 肽)在脑中的沉积和聚集有关,并在中枢神经系统形成斑块 [4][5][6]。这些聚集体可以以纤维状和非纤维状形式观察到。Aβ 有两种同工型,Aβ40 和 Aβ42,它们以不同的速率自发结合成低聚物并产生纤维和斑块 [7][8]。由于 Aβ42 聚集体的生成速度比 Aβ40 更快,因此它可能更具神经毒性 [9]。AD 诊断生物传感器,例如基于半导体的场效应晶体管 (FET),可以小型化电流笨重且
1. 意大利的里雅斯特大学化学与制药科学系。2. 意大利帕多瓦希望城儿科研究中心基金会。3. 卡塔尔多哈 Sidra Medicine 癌症项目。4. 瑞典斯德哥尔摩卡罗琳斯卡医学院环境医学研究所。5. 英国曼彻斯特大学化学系。6. 英国曼彻斯特大学生物、医学与健康学院纳米医学实验室。7. 美国费城宾夕法尼亚大学神经工程与治疗中心神经病学、生物工程、物理医学与康复系;美国费城 Michael J. Crescenz 退伍军人医疗中心神经创伤、神经退行性疾病与修复中心。8. 土耳其安卡拉大学生物医学工程系。 9. 安卡拉大学干细胞研究所,安卡拉,土耳其。10. 德累斯顿工业大学科学学院化学与食品化学系,德累斯顿,德国。11. 帕多瓦大学生物医学科学系,帕多瓦,意大利。
摘要:自 2004 年分离出原子级薄石墨烯片以来,二维 (2D) 材料因其特殊和多功能的特性而引起了人们的极大兴趣。然而,随着 2D 材料的生产和使用日益增多,有必要彻底评估其对人类健康和环境的潜在影响。此外,需要统一的测试协议来评估 2D 材料的安全性。由欧盟委员会资助的石墨烯旗舰项目 (2013-2023) 致力于识别石墨烯基材料以及新兴 2D 材料(包括过渡金属二硫属化物、六方氮化硼等)的潜在危害。此外,人们还探索了所谓的绿色化学方法,以实现安全和可持续地生产和使用这一迷人的纳米材料家族的目标。本综述简要概述了石墨烯旗舰项目的发现和经验教训。关键词:二维纳米材料、碳材料、暴露、环境、毒性、危害、安全设计、生物降解性、测试指南
噬菌体,也称为噬菌体,是在细菌和古细菌中复制的病毒。噬菌体最初被发现为抗菌剂,并且在称为“噬菌体疗法的过程中,它们都被用作细菌感染的治疗剂。”最近,已经研究了噬菌体在各个领域的功能性纳米材料,因为它们不仅可以作为治疗剂,而且可以作为生物传感器和组织再生材料的功能。噬菌体对人是无毒的,它们具有自组装的纳米结构和功能特性。此外,可以很容易地对遗传修饰进行噬菌体以显示特定的肽或通过噬菌体显示筛选功能性肽。在这里,我们证明了噬菌体纳米材料在组织工程,传感和探测的背景下的应用。
引言纳米技术是科学和工程领域,以及来自纳米级原子和分子基础的物体,设备和系统的开发。非物质定义为具有至少1至100纳米的一个维度的粒子,通常称为纳米材料。1,2纳米材料可以分为碳,金属和金属氧化物纳米颗粒以及基于聚合物的纳米颗粒。3,4一种类型的碳纳米材料是氧化石墨烯(GO),它是一种化学优化的石墨烯,它是在二维蜂窝晶状体中排列的单层碳原子。5与原始石墨烯不同,GO包含各种含氧官能团,例如羟基,环氧树脂和羧基,它们会显着改变其性质。这些官能团在水和其他溶剂中具有高度分散性,增强其加工性和