反潜战是海军最重要的任务之一。第一阶段和不可或缺的阶段是探测潜艇,第二阶段是确定潜艇的位置,第三阶段是对其进行分类或识别。潜艇的探测、定位和分类主要采用目前被认为是最有效的水声方法。水声潜艇探测方法通常分为两类:主动和被动。主动方法使用潜艇反射的声信号回声,而被动方法使用潜艇发出的声信号。主动方法的优势在于可以探测不发出任何声信号(例如潜艇不动时)或发出非常弱的信号(例如所谓的安静潜艇)的潜艇。主要缺点是需要发出探测信号,以揭示敌方回声测距系统的存在。被动方法使用潜艇发出的声信号,这是一个明显的缺点;然而,它们不会揭示系统的存在。考虑到两种方法的互补优势,它们通常结合用于潜艇探测。
反潜战是海军最重要的任务之一。第一阶段和不可或缺的阶段是探测潜艇,第二阶段是确定潜艇的位置,第三阶段是对其进行分类或识别。潜艇的探测、定位和分类主要采用目前被认为是最有效的水声方法。水声潜艇探测方法通常分为两类:主动和被动。主动方法使用潜艇反射的声信号回声,而被动方法使用潜艇发出的声信号。主动方法的优势在于可以探测不发出任何声信号(例如潜艇不动时)或发出非常弱的信号(例如所谓的安静潜艇)的潜艇。主要缺点是需要发出探测信号,以揭示敌方回声测距系统的存在。被动方法使用潜艇发出的声信号,这是一个明显的缺点;然而,它们不会揭示系统的存在。考虑到两种方法的互补优势,它们通常结合用于潜艇探测。
反潜战是海军最重要的任务之一。反潜战的第一步也是不可或缺的一步是探测潜艇,第二步是确定潜艇的位置,第三步是对其进行分类或识别。潜艇的探测、定位和分类主要采用水声方法,这种方法目前被认为是最有效的。水声潜艇探测方法通常分为主动和被动两类。主动方法使用潜艇反射的声信号回声,而被动方法使用潜艇发出的声信号。主动方法的优势在于可以探测到不发出任何声信号的潜艇(例如当潜艇不动时)或发出非常弱的信号(例如所谓的安静潜艇)。主要缺点是需要发射探测信号,这会暴露敌方回声测距系统的存在。被动方法使用潜艇发出的声学信号,这是一个明显的缺点;但是,它们不会暴露系统的存在。鉴于两种方法的互补优势,它们通常在潜艇探测中结合使用。
SAM 技术分析反射波和透射波的强度和相位,以创建反映样本声阻抗变化的视觉图像,从而揭示内部裂纹和缺陷,例如分层和空隙。在这种无损检测过程中,压电换能器会产生超声波,该换能器将电信号转换为声信号,反之亦然(检测阶段)。通过一组声透镜将声波聚焦在样本内部,以检查系统的内部。
摘要:啮齿动物脑血管成像是光声学研究大脑活动和病理的热门应用之一。深层脑结构成像常常受到光传输和声学检测系统布置不合理所阻碍。在我们的工作中,我们重新审视了光声信号生成背后的物理原理,以便从理论上评估最佳激光波长,以超越光在高度散射和吸收的脑组织中扩散所造成的穿透障碍,对啮齿动物进行脑血管光声血管造影。我们开发了一个基于扩散近似的综合模型,使用与典型鼠脑非常相似的光学和声学参数来模拟光声信号生成。该模型揭示了可见光和近红外光谱中的三个特征波长范围,最适合对不同大小和深度的脑血管进行成像。数值模拟证实了理论结论,而体内成像实验进一步验证了准确分辨 0.7 至 7 毫米深度范围内脑血管的能力。
数字化音频信号通过低通滤波器路由,带通滤波器抑制数据信号频谱之外的干扰信号成分。内部立体声编码器处理滤波后的音频信号以产生符合标准的 MPX 信号。对于立体声信号,您可以设置导频音的级别。数字 MPX 信号用于高精度直接数字合成器 (DDS) 的频率调制。
本文提出了一种视觉听觉替代方法,以帮助视障人士理解场景。我们的方法侧重于在用户附近进行人员定位,以方便在城市中行走。由于在这种情况下出于用户安全的考虑,需要实时和低延迟,因此我们提出了一种嵌入式系统。该处理基于轻量级卷积神经网络,以执行有效的 2D 人员定位。该测量结果通过相应的人员深度信息得到增强,然后通过头部相关传递函数转录为立体声信号。本文提出了一种基于 GPU 的实现,可以在 640x480 视频流上以 23 帧/秒的速度实现实时处理。我们通过实验表明,该方法可以实现实时准确的基于音频的定位。
摘要。用于传播导波的压电超声波传感器可用于检查工程结构中的大面积区域。然而,导波声信号固有的色散和噪声、结构中的多重回波以及缺乏近似或精确的模型,限制了它们作为连续结构健康监测系统的使用。在本文中,研究了在板状结构上随机放置压电传感器网络以检测和定位人为损坏的实现。在厚度为 1.9 毫米的铝薄板上设置了一个以一发一收配置工作的宏纤维复合材料 (MFC) 传感器网络。使用离散小波变换在时间尺度域中分析信号。这项工作有三个目标,即首先使用传感器网络产生的超声波的短时小波熵 (STWE) 开发基于熵分布的损伤指数,其次确定备用宏光纤复合材料 (MFC) 传感器阵列检测人为损伤的性能,第三对收集的信号实施到达时间 (TOA) 算法,以定位人造圆形不连续的损伤。我们的初步测试结果表明,所提出的方法为损伤检测提供了足够的信息,一旦与 TOA 算法相结合,就可以定位损伤。
脱颖而出的乔什·戈德斯坦(Josh Goldstein),2025年的板球听觉系统已引起神经障碍者的感兴趣,已有40多年的历史了。以前的研究表明,板球对两种主要类型的刺激敏感的方式建立了听觉系统,声音大约为5 kHz,而1 kHz以上的声音敏感。在听到交配电话(5kHz)后,女板球将表现出正面的音调,转向声源。相反,文献表明蝙蝠(板球的天然捕食者)在约18 kHz的频率下排放回声信号(Moiseff等,1978)。夜间会引起板球的飞行行为,当听到掠食性蝙蝠超声波时,板球会表现出负阴极并从声音中飞走(Moiseff等,1978)。过去的实验表明板球具有主导的耳朵。当蝙蝠超声波在左侧或右侧的左右或板球前方或后方的右侧之间或右侧呈现时,动物将无法定位刺激的方向。相反,板球将始终转向左或右向,这意味着板球具有主导的耳朵(Nolen and Hoy 1986)。
Sophia Weiner,Sauer的Mathias。分析蛋白质组学分析的制备和数据临床蛋白质组学。2022。II。 Sophia Weiner,Sauer,Laia Montolia,Andrea L. Blessed,Nicholas J. Ashton。 Rauramaa,Mikko Hiltunen,Rosa-Neto Pedro,Blennow,Johan Gobom。 上面的洪水蛋白研究对阿尔茨海默氏症连续体的保护: manusscript。 iii。 Sophia Weiner,Mathias Sauer,Brinkmalm,Julius Constantine,Fernandes Fernandes,Becker,Becker,BengtNellgård,Keti Dalla,Douglas Galasko,Henrig Zetterberg,Blennow,Blennow,Johan Gobom。 scrn1:在阿尔茨海默氏症的灾难中可用脑大脑。 阿尔茨海默氏症和痴呆症。 2023。 iv。 蛋白质组学分析明显区分的脑杂交遗传声信号深层亚型。 翻译科学医学。 2025。 V. Imogen J. 定量与介质蛋白相关的接壤中的Pepts颗粒。 manusscript。II。Sophia Weiner,Sauer,Laia Montolia,Andrea L. Blessed,Nicholas J. Ashton。 Rauramaa,Mikko Hiltunen,Rosa-Neto Pedro,Blennow,Johan Gobom。上面的洪水蛋白研究对阿尔茨海默氏症连续体的保护:manusscript。iii。Sophia Weiner,Mathias Sauer,Brinkmalm,Julius Constantine,Fernandes Fernandes,Becker,Becker,BengtNellgård,Keti Dalla,Douglas Galasko,Henrig Zetterberg,Blennow,Blennow,Johan Gobom。scrn1:在阿尔茨海默氏症的灾难中可用脑大脑。阿尔茨海默氏症和痴呆症。2023。iv。蛋白质组学分析明显区分的脑杂交遗传声信号深层亚型。翻译科学医学。2025。V. Imogen J.定量与介质蛋白相关的接壤中的Pepts颗粒。manusscript。乔尔·西伦(Joel Simren),伊莫因斯(Imogen)。 Harro Seelaar,RAC,Robert Laforce,Caroline Graff,Daniela Galimmberti,Rik Vandenberg,Sorbi,Otto,Pasquier's Florence,Simon,Chris R. Butler,Chris R. Butler, Isabelle Le Ber,Elizabeth Finger,Maria Carmela Tartaglia,Mario Masellis,James B. Rowe,Matthis Synofzik,Fermin Moreno,Borroni Barbara,Blenhow,Henrik Zetterberg*,Jonathan D. Rohrer*,Johan Gobom*。JohnRönnholm,Mathias Sauer,Johanna Nilsson,John Van Swieten,Liize C. Jiskoot,Harro Seelaar,Racel St. Valle,Rik Vandenberghe,Mendonça的Alexander,Tiraboschi Pietro,Santana的Isabel,Alexander Gerhard,Johannes Levin,Sorb,Sorb,Sorb,Sorb,Isabelle Le Ber,Elizabeth,Elizabeth,James B. Rowe。 Bernno,Blessings,Blenharow的Bill,Jonathan,D。Rohrer*,Johan Gobom*。