光子整合电路是多模式光谱感觉系统的微型化解决方案。多模式光谱感官数据很复杂,具有较大的冗余性数据量,因此需要与高通信功率消耗相关的高通信带宽才能传输感官数据。为了规避这种高通信成本,光子传感器和处理器被带入亲密关系,并使用集成的硅光子卷积处理器提出了光子多模式内传感器计算系统。微区谐振器横梁阵列用作使用5位精度实现卷积操作的光子处理器,并通过图像边缘检测任务验证。证明了多模式光谱感觉数据的原位处理,进一步将处理器与光子光谱传感器整合在一起,从而实现了不同温度下不同类型和浓度的蛋白质种类的分类。在45个不同类别中,分类精度为97.58%。多模式内传感器计算系统展示了整合光子处理器和光子传感器以增强边缘光子设备的数据处理能力的可行性。
遵守与您或我们实施的任何行业标准,Stmicroelectronics NV及其子公司(“ ST”)保留对ST产品进行更改,更正,改进,改进以及改进ST产品和本文档的改进的权利。购买者应在下订单之前获取有关ST产品的最新相关信息。ST产品根据ST在订单确认时的销售条款和销售条件出售。
DRAC 项目(文件编号为 001-P-001723)由欧盟区域发展基金在 2014-2020 年加泰罗尼亚 ERDF 运营计划框架内共同资助 50%,资助金额为 2,000,000.00 欧元,并得到加泰罗尼亚政府的支持。版权所有 2020 © 保留所有权利。
13.1 地心地球固定笛卡尔坐标系 (ECEF 或 ECR) .......................................................................... 65 13.2 椭球地理坐标系 .............................................................................................................. 65 13.3 局部地心坐标系 (LTS) ............................................................................................................. 65 13.4 地理坐标系和地心坐标系之间的转换 ............................................................................. 66 13.5 地心 (ECR) 坐标系和局部地心 (LTS) 坐标系之间的转换 .................................. 67 13.6 大地基准 ............................................................................................................................. 67 13.7 地图投影 ............................................................................................................................. 68 13.8 大地水准面和椭球高程 ............................................................................................................. 68 13.9 准惯性坐标系 (ECI 地心惯性) ............................................................................................. 69
摘要 — RISC-V 处理器的开源架构为设计人员提供了灵活性,使他们能够为各种应用实现架构。然而,同样的优势也使验证过程变得困难,因为必须验证所有变体。拟议的项目将为扩展的 RISC V 架构创建一个验证环境。RISC-V 支持整数乘法和除法的“M”标准扩展以及控制和状态寄存器指令的“Zicsr”标准扩展。上述 ISA 类将使用基于 RV32I ISA 的 DUT 进行测试,并在 DUT 周围使用 UVM 环境来验证 M 和 Zicsr 功能。M 和 Zicsr 类型 ISA 经过验证,功能覆盖率为 95%。创建的 UVM 框架可以重复用于验证其他指令集架构。
摘要 开发用于量子处理器远程纠缠的网络是量子信息科学领域的一项突出挑战。我们提出并分析了一种用于中性原子量子计算机远程纠缠的双物种架构,该架构基于光学捕获原子量子比特阵列与用于光子收集的快速光学器件的集成。其中一种原子用于原子-光子纠缠,另一种原子用于局部处理。我们比较了两种光学方法可实现的远程纠缠生成速率:使用透镜的自由空间光子收集和近同心、长工作距离谐振腔。腔内的激光冷却和捕获消除了从源区域机械传输原子的需要,从而可以实现快速的重复率。使用优化的腔精细度值,预测在实验可行参数下远程纠缠生成速率 > 10 3 s − 1。
从根本上讲,英特尔主张内置的加速能力可以有效地提高CPU核心计数和复杂性的性能。从我们看来,英特尔已经证明了前一代Xeon可伸缩处理器在特定的现实世界中每瓦提供突破性的性能,已经具有广泛的可信度。因此,客户和用户获得了更有效的CPU使用,减少功耗和提高投资回报率的范围。总的来说,英特尔通过英特尔内置加速器创新,英特尔正在重新定义竞争格局,以使内置加速能力和每核绩效在数据中心和云环境中最高的选择标准。
RISC-V孵化于加州大学伯克利分校,是基于精简指令集原理的第五代指令集架构,其应用涉及IOT(物联网)、高性能计算等。现行的指令集架构大多受专利保护,这对小公司是一种打击,限制了处理器产业的发展和创新。RISC-V的开源、免费特性为处理器的发展注入了新的活力。随着处理器面积和频率的增加,软件的开发和调试变得更加复杂,对调试手段的要求也越来越高[1]。良好的调试特性可以帮助软件开发人员快速定位错误,因此调试设计对推广RISC-V处理器的使用非常重要,可以有效促进RISC-V处理器生态的发展。
总结中国实施的仅能能源市场不能强烈支持大规模可再生能源扩展,因为可再生能源扩展可能会逐步淘汰不可再生的功率能力。然而,不可更新的电力能力,尤其是中国的燃煤能力,可以证明可再生能源扩张所需的重要电力系统的适用性。我们通过将其中的一些转换为储备能力,以支持可再生能源的扩展,从而引入能力付款,以秩序地退休当前的燃煤能力。使用Switch-China模型产生的生成和传输扩展结果,本文提出了基于实施能力支付的假设的有序退休路径。我们的结果表明,燃煤功率的大约100-200吉瓦(GW)可以在2050年之前继续使用,其中大部分被用作储备能力。需要400-700亿元人民币的能力支付才能达到这一退休路径,并且更高的充足性要求需要更高的付款。
本文介绍了一种基于内建自测试 (BIST) 的高级加密标准 (AES) 加密处理器专用集成电路 (ASIC) 的设计。AES 已被证明是美国政府宣布的最强大的对称加密算法,其性能优于所有其他现有加密算法。其硬件实现比软件实现提供更高的速度和物理安全性。由于这个原因,文献中已经提出了许多 AES 加密处理器 ASIC,但复杂 AES 芯片中的可测试性问题尚未得到解决。本研究为实现混合模式 BIST 技术的 AES 加密处理器 ASIC 引入了一种解决方案,该技术是伪随机和确定性技术的混合。BIST 实现的 ASIC 是使用 IEEE 行业标准硬件描述语言 (HDL) 设计的。它已使用电子设计自动化 (EDA) 工具进行了模拟,并使用美国政府国家标准与技术研究所 (NIST) 的输入输出数据进行了验证和确认。模拟结果表明,该设计在 ASIC 的不同操作模式下按预期功能运行。将当前的研究与其他研究人员的研究进行了比较,结果表明它在 BIST 实现到 ASIC 芯片方面是独一无二的。