印度数以百万计的人暴露于纳尔图灾难,例如洪水和由重度致敬事件引发的山体滑坡,尤其是在夏季季风季节(Ali等人)(Ali等人。,2019年; Gupta&Nair,2011年; UNDRR,2020年; Van Oldenborgh等。,2016年; Varikoden&Reji,2022年; Wallemacq等。,2015年)。这些事件通常是低概率和孤立性的,并且源于同级尺度的干扰在1000 km或更多的尺度上与5至100 km的中尺度对流系统的尺度上的相互作用,并具有可能的含量增强(Francis&Gadgil,Mohandas等,2006; Mohandas et; Mohandas et;,2020年; Sillmann等。,2017年; Sreenath等。,2022; Srinivas等。,2018年; Varikoden&Reji,2022年; Viswanad-Hapalli等。,2019年)。与极端降水有关的灾难可能导致大量死亡(Mahapatra等人,2018年; Ray等。,2021; UNDRR,2020年),以及对财产和基础设施的广泛损害,牲畜丧失以及农作物和农业土地的破坏(Revadekar&Preethi,2012年)。此外,在季风季节,印度极端降水事件的频率,强度和空间变异性在最近几十年中显示出显着的趋势,预计整个21世纪将继续增加(Ali等人。,2019年; Ghosh等。,2012年; Goswami等。,2006年; Mukherjee等。,2018年; Pattanaik&Rajeevan,2010年; Roxy等。,2017年;辛格等。,2019年; Sooraj等。,2016年)。及时,高质量且可靠的预测此类极端事件及其对印度的分散的可能性,对于为当局提供有效的早期警告至关重要,以改善对灾难的反应和准备,2006年; Mahanta&Das,2017; Uccellini; Uccellini&uccellini&ten Hoeve,2019年)。印度国家中型天气前铸造中心(NCRMWF)使用NCRMWF版本的英国MET Office Unified Model的NCRMWF版本的全球和区域配置产生数值天气预报。由于对降水的确定性预测,尤其是极端事件的预测,由于天气的混乱性质以及预测误差的相关指数增长(例如,由潮湿对流的模型限制和在初始条件下的模型限制引起的)是首选方法是首选的方法。他们提供了对未来状态的范围的估计,从而量化了不确定性,并为发生极端天气事件的产量概率(Ashrit等人,2020年; Mukhopadhyay等。,2021)。NCMRWF集合预测系统(NEP)通常由(a)全球预测(NCMRWF全局合奏预测系统[NEPS-G]),有23个成员(一个对照和22个对照组和22个受扰动成员),销售时间为12天,在12公里的分辨率下为10天
Ashley Carlton、Rachel Morgan、Whitney Lohmeyer 和 Kerri Cahoy,“遥测故障检测算法:航天器监测和空间环境传感的应用”,《航空信息系统杂志》第 15 卷,第 5 期,2018 年 5 月,第239-252 页。
摘要 - 属于一组精神疾病,这些疾病是根据标准化诊断手册的标准诊断出的。诊断方案包括评估患者的症状,但迄今为止,尚无客观评估或测量的方法。脑电图(EEG)是一种非侵入性大脑电活动测量技术。当前的研究主要关注脑电图数据和特征提取,机器学习(ML)和深度学习(DL)来对情感障碍进行分类。在本文中,重点是衡量预处理EEG信号对ML模型的影响。评估了以下预审查方法的影响:信号滤波,独立组件分析(ICA)和规范相关分析(CCA)。这些方法是在由来自诊断为情感障碍和35名健康受试者的70名受试者的EEG信号组成的数据集上评估的。预处理后,为每个受试者提取570个功能,并使用几种ML模型进行分类。CCA提供了最佳结果,决策树分类器的最高F1得分为0.9756。CCA应被视为一种有益的预处理方法,以在构建脑电图数据的复杂模型时可能会改善分类结果。关键字 - 脑电图,规范相关分析,独立组件分析,预处理,AFFISCAING疾病Hokdoitujkl
许多现实世界的优化问题,尤其是工程优化问题,都涉及约束条件,这使得寻找可行解变得十分困难。许多研究人员已经针对受约束的单目标和多目标优化问题研究了这一挑战。具体而言,本研究扩展了 Gandomi 和 Deb(《计算机方法与应用机械工程》363:112917, 2020)提出的用于约束优化问题的边界更新 (BU) 方法。BU 是一种隐式约束处理技术,旨在通过迭代削减不可行搜索空间,从而更快地找到可行区域。这样做会扭曲搜索空间,使优化问题更具挑战性。为此,我们实施了两种切换机制,当找到可行区域时,将景观连同变量一起转换为原始问题。为了实现这一目标,我们考虑了两个阈值,分别代表不同的切换方法。在第一种方法中,当约束违规达到零时,优化过程将转换为不使用 BU 方法的状态。在第二种方法中,当目标空间不再发生变化时,优化过程将转入不使用 BU 方法的优化阶段。为了验证该方法的有效性,我们考虑使用著名的进化单目标和多目标优化算法来解决基准测试和工程问题。本文分别在整个搜索过程中使用和不使用 BU 方法对所提出的方法进行了基准测试。结果表明,该方法可以显著提高收敛速度,并能够更好地解决约束优化问题。
AST月,OpenAI首席执行官Sam Altman终于承认了研究人员多年来一直在说的话 - 人工智能(AI)行业正处于能源危机的方面。这是一个不可接受的入学。在世界经济论坛在瑞士达沃斯举行的年度会议上,奥特曼警告说,下一波生成的AI系统将消耗的力量要比预期的要大得多,并且能源系统将难以应付。“没有突破就无法到达那里,”他说。我很高兴他说了。自从我从2018年开始发布有关AI行业的环境成本以来,我已经看到一贯的低调和否认。Altman的承认使研究人员,监管机构和行业巨人谈论了生成AI的环境影响。那么,Altman Banking启动了什么能源突破?不是更可持续的AI系统的设计和部署,而是核融合。他在那场比赛中也有皮肤:2021年,阿尔特曼(Altman)开始投资华盛顿埃弗里特(Everett)的Fusion Company Helion Energy。大多数专家都同意,核融合不会显着构成在本世纪中叶脱碳以应对气候危机的关键目标。Helion最乐观的估计是,到2029年,它将产生足够的能量,为40,000个平均美国家庭供电;一项评估表明,由OpenAI在加利福尼亚州旧金山创建的聊天机器人Chatgpt已经消耗了33,000户房屋的能源。据估计,由生成AI驱动的搜索使用了传统网络搜索能量的四到五倍。,这不仅仅是能量。在几年内,大型AI系统可能需要与整个国家一样多的能量。生成的AI系统需要大量的淡水来冷却其处理器并发电。在爱荷华州西得梅因市,一个巨大的数据中心集群为OpenAI最先进的型号GPT-4提供。当地居民的诉讼显示,2022年7月,即Openai完成了培训模型的一个月,该集群使用了该地区约6%的水。根据公司的环境报告,当Google和Microsoft准备了大型语言模型时,两者都在用水方面有很大的峰值 - 在一年内分别增加了20%和34%。一个预印本1表明,在全球范围内,对AI的水需求可能是2027年的一半。在另外2个中,Facebook AI研究人员称工业的环境影响是追求规模的“房间里的大象”。而不是管道梦,我们需要务实的
如今,已有多种基于星载和低空空中/无人机平台的高光谱遥感传感器可用于地球科学应用,具有多种光谱和空间分辨率[1-4]。高光谱遥感图像的发展促进了新型图像处理技术的发展,并在土壤地球化学、水质评估、森林物种制图、农业压力、矿物蚀变制图等广泛领域取得了令人欣喜的成果。在过去的二十年里,不同的空间机构发射了多个星载高光谱传感器(例如,美国国家航空航天局 (NASA) 于 2000 年 11 月发射的 Hyperion;日本宇宙航空研究开发机构 (JAXA) 于 2019 年 12 月发射的高光谱成像仪套件 (HISUI);意大利航天局 (ASI) 于 2019 年 3 月发射的高光谱应用任务前体探测器 (PRISMA))[1,5,6]。这些传感器充分利用了高光谱数据,并带来了从噪声消除到光谱制图等数据处理方法的创新。先前的研究强调了高光谱星载传感器在识别纯目标和识别具有弱光谱特征的光谱目标方面的局限性,因为这些高光谱传感器具有粗空间分辨率(通常为 20 m 至 30 m)和较差的信噪比(例如,Hyperion 在短波电磁域中的信噪比 (SNR) 较差)[7-10]。然而,这些星载传感器在环境监测方面取得了令人鼓舞的结果(例如,森林覆盖分类、检测森林的物候变化、土地利用/土地覆盖制图、农业土地覆盖表征、作物压力估计、岩性和矿物制图 [11-13])。高光谱图像处理解决了与分类方法相关的主要困难,例如相关数据的高维性和标准处理技术的有限可用性[14]。为了克服这些局限性,最近建立了几种机器学习算法,补充了高光谱数据处理的巨大潜力[14]。由于星载高光谱传感器缺乏全球覆盖,不同国家使用不同的先进高光谱传感器进行常规的基于飞机和无人机的高光谱调查,例如先进的可见红外光谱仪(AVIRIS)及其最新版本AVIRIS-下一代(AVIRIS-NG);HyMap;数字机载成像光谱仪(DAIS)等。这些传感器能够收集
抽象 - 各个年龄段和社会经济水平的人,正在被诊断出患有2型糖尿病的诊断,其速度比以往任何时候都高。它可能是多种疾病的根本原因,其中最著名的包括失明,肾脏疾病,肾脏疾病和心脏病。因此,设计系统的设计至关重要,基于医疗信息,能够可靠地检测患有糖尿病的患者。我们提出了一种鉴定糖尿病的方法,该方法涉及使用交叉验证训练模式在五到10倍之间训练深神经网络的特征。PIMA印度糖尿病(PID)数据集是从UCI的机器学习存储库一部分的数据库中检索的。此外,十倍交叉验证的结果显示出97.8%的精度,召回97.8%,使用RF算法的PIMA数据集的精度为97.8%。这项研究检查了许多其他生物医学数据集,以证明机器学习可以用于开发可以准确预测糖尿病的有效系统。在生物数据集的实验发现中使用了几种不同类型的机器学习分类器,例如KNN,J48,RF和DT。获得的发现表明我们的可训练模型能够正确分类生物医学数据。通过实现Parikson数据集的较高精度,召回和精确度来证明这一点。
通过执行表结构化,我们不再需要预先定义属于表的架构(这些表中的架构是在后处理期间定义的)。这意味着如果对表进行了更改(例如添加了新行),它不会影响我们模型的预测能力。此外,以这种方式构造数据使我们能够准确识别键值对,并保留不同值之间的关系(例如年初和年末金额)。
摘要:引言。葡萄果渣是酿酒过程中最重要的副产品,可作为额外的原料使用。需要一种最佳的储存技术,以便果渣可以进一步加工以获得新型产品。我们旨在研究葡萄果渣处理对其微生物群落的影响。研究对象和方法。我们对白葡萄和红葡萄品种的新鲜和储存一个月的果渣样品中的微生物群落进行了鉴定和量化。样品在 60-65°C 下进行常规干燥,在 60-65°C 下进行红外干燥,以及用二氧化硫和焦亚硫酸钠进行亚硫酸化。结果与讨论。果渣微生物群落可被视为一个微生物群落。在露天贮藏一个月的样品中,几乎所有的酵母菌都是酿酒酵母,假丝酵母、毕赤酵母、汉逊酵母、有孢汉逊酵母/克勒克酵母和有孢圆酵母属的膜状酵母的浓度较高,还有毛霉、黑曲霉和青霉的分生孢子。普遍存在的细菌包括乙酸菌(主要是醋酸杆菌)和乳酸菌(植物乳杆菌、片球菌、明串珠菌)。这些微生物显著改变了挥发性和非挥发性成分的浓度,使总多糖、酚类化合物和花青素分别降低了 1.7–1.9 倍、3.7–4.0 倍和 4.0–4.5 倍。贮藏一个月的样品中微霉菌和细菌的含量明显高于新鲜果渣。预干燥和亚硫酸化可减少细菌污染,但与微真菌相比,程度较小。结论。长期储存会使果渣变质,导致其化学成分发生显著变化。亚硫酸化可减少储存期间微生物的生长,但不能提供长期保存(超过一个月),而 60–65 °C 的预干燥可延长储存时间。
摘要:近年来,越来越多的框架已应用于脑部计算机间技术技术,基于脑电图的机车成像(MI-EEG)正在迅速发展。但是,提高MI-EEG分类的准确性仍然是一个挑战。提出了一个深入的学习框架,即提议解决非平稳性质,激发发生的时间定位以及本文中MI-EEG信号的频段分布特征来解决非平稳性质。首先,根据C3和C4通道之间的逻辑对称关系,MI-EEG信号的时频图像扣除(IS)的结果用作分类器的输入。它既降低了冗余,又增加了输入数据的特征差异。第二,注意模块被添加到分类器中。作为基本分类器构建了卷积神经网络,并通过引入卷积块注意模块(CBAM)来自适应提取有关MI-EEG信号出现的时间位置和频率分布的信息。这种方法减少了无关的噪声干扰,同时增加了模式的鲁棒性。在BCI竞争IV数据集2B上评估了框架的性能,该数据集2B,平均准确性达到79.6%,平均KAPPA值达到0.592。实验结果验证了框架的可行性,并显示了MI-EEG信号分类的性能提高。