摘要:近年来,越来越多的框架已应用于脑部计算机间技术技术,基于脑电图的机车成像(MI-EEG)正在迅速发展。但是,提高MI-EEG分类的准确性仍然是一个挑战。提出了一个深入的学习框架,即提议解决非平稳性质,激发发生的时间定位以及本文中MI-EEG信号的频段分布特征来解决非平稳性质。首先,根据C3和C4通道之间的逻辑对称关系,MI-EEG信号的时频图像扣除(IS)的结果用作分类器的输入。它既降低了冗余,又增加了输入数据的特征差异。第二,注意模块被添加到分类器中。作为基本分类器构建了卷积神经网络,并通过引入卷积块注意模块(CBAM)来自适应提取有关MI-EEG信号出现的时间位置和频率分布的信息。这种方法减少了无关的噪声干扰,同时增加了模式的鲁棒性。在BCI竞争IV数据集2B上评估了框架的性能,该数据集2B,平均准确性达到79.6%,平均KAPPA值达到0.592。实验结果验证了框架的可行性,并显示了MI-EEG信号分类的性能提高。
主要关键词