许多现实世界的优化问题,尤其是工程优化问题,都涉及约束条件,这使得寻找可行解变得十分困难。许多研究人员已经针对受约束的单目标和多目标优化问题研究了这一挑战。具体而言,本研究扩展了 Gandomi 和 Deb(《计算机方法与应用机械工程》363:112917, 2020)提出的用于约束优化问题的边界更新 (BU) 方法。BU 是一种隐式约束处理技术,旨在通过迭代削减不可行搜索空间,从而更快地找到可行区域。这样做会扭曲搜索空间,使优化问题更具挑战性。为此,我们实施了两种切换机制,当找到可行区域时,将景观连同变量一起转换为原始问题。为了实现这一目标,我们考虑了两个阈值,分别代表不同的切换方法。在第一种方法中,当约束违规达到零时,优化过程将转换为不使用 BU 方法的状态。在第二种方法中,当目标空间不再发生变化时,优化过程将转入不使用 BU 方法的优化阶段。为了验证该方法的有效性,我们考虑使用著名的进化单目标和多目标优化算法来解决基准测试和工程问题。本文分别在整个搜索过程中使用和不使用 BU 方法对所提出的方法进行了基准测试。结果表明,该方法可以显著提高收敛速度,并能够更好地解决约束优化问题。
主要关键词