在许多值得关注的科学应用中,量子算法有可能比传统算法快得多。例如量子机器学习 [1]、量子化学 [2] 以及许多其他 [3]。不幸的是,其中许多应用还无法在当前的嘈杂中型量子 (NISQ) 计算机上实现 [4],需要等到噪声源可以被抑制到阈值,使量子计算机可用于实践,甚至构建容错量子计算机 [5]。然而,许多有趣的 LGT 问题已经可以通过 NISQ 设备进行研究 [6]。特别是,如果以哈密顿量公式研究 LGT,量子算法通常不会受到符号问题的影响 [7,8]。一种重要的现成算法是变分量子特征值求解器 (VQE) [ 9 ],它是一种混合量子经典算法,利用变分原理寻找给定汉密尔顿量 H 的基态(和激发态)。VQE 的量子部分用于测量给定多量子比特状态中汉密尔顿量的期望值,即能量,而经典部分则在由参数化量子电路生成的多量子比特状态族中搜索使能量最小化的状态。本文提出的算法是一种经典优化器,旨在找到基态的良好近似值,尽可能减少能量测量的次数。这里选择的方法称为贝叶斯全局优化。它的首次应用可以追溯到 20 世纪 60 年代 [ 10 ],而它的现代实现则基于最近的研究 [ 11 ]。该方法的基础是高斯过程回归 (GPR),这是一种基于高斯过程贝叶斯推理的插值方法。它使我们能够使用有限量的 (嘈杂) 数据创建黑盒函数的预测模型。在每次优化迭代中,该模型用于确定一组可能接近全局最小点的参数。此步骤按照称为获取函数优化的过程执行。这里提出的优化能量的算法不同于 VQE 中常用的其他替代方法,因为它不仅使用能量的估计值,还使用其统计误差的值。其动机是降低每一步的量子测量次数:即使对于不精确的能量测量,只要它们的误差由于中心极限定理近似为高斯,该过程也是定义良好的。使用噪声设备模拟器将该算法的结果与其他常用的替代方案进行了比较。
主要关键词