量子计算是一种计算范式,在解决各种问题时有可能超越经典方法。最近提出的量子近似优化算法 (QAOA) 被认为是近期展示量子优势的主要候选算法之一。QAOA 是一种变分混合量子-经典算法,用于近似解决组合优化问题。QAOA 针对给定问题实例获得的解决方案的质量取决于用于优化变分参数的经典优化器的性能。在本文中,我们将寻找最优 QAOA 参数的问题表述为一项学习任务,其中可以利用从解决训练实例中获得的知识来为看不见的测试实例找到高质量的解决方案。为此,我们开发了两种基于机器学习的方法。我们的第一种方法采用强化学习 (RL) 框架来学习策略网络以优化 QAOA 电路。我们的第二种方法采用核密度估计 (KDE) 技术来学习最佳 QAOA 参数的生成模型。在这两种方法中,训练过程都是在可以在传统计算机上模拟的小型问题实例上执行的;然而,学习到的 RL 策略和生成模型可用于有效地解决更大的问题。使用 IBM Qiskit Aer 量子电路模拟器进行的大量模拟表明,与其他常用的现成优化器相比,我们提出的基于 RL 和 KDE 的方法将最优差距缩小了 30 倍。15 倍。
主要关键词