Loading...
机构名称:
¥ 2.0

摘要:强化学习是各个领域的重要技术,尤其是在加固学习的自动化机器学习中(AUTORL)。在组合优化中将转移学习(TL)与Autorl的集成是需要进一步研究的领域。本文同时采用Autorl和TL来有效地应对组合优化的挑战,特别是不对称的旅行推销员问题(ATSP)和顺序排序问题(SOP)。进行了统计分析,以评估TL对上述问题的影响。fur-hoverore,将auto_tl_rl算法作为一种新颖的贡献引入,结合了自动和TL方法。经验结果强烈支持这种整合的有效性,在比传统技术效率明显高得多的解决方案中,初步分析结果提高了85.7%。此外,在13个实例中减少了计算时间(即在92.8%的模拟问题中)。TL集成模型的表现优于最佳基准,证明其优越的收敛性。AUTO_TL_RL算法设计允许在ATSP和SOP域之间进行平滑的过渡。在全面的评估中,在分析的78%的实例中,Auto_TL_RL明显优于传统方法。

组合优化问题的转移加固学习

组合优化问题的转移加固学习PDF文件第1页

组合优化问题的转移加固学习PDF文件第2页

组合优化问题的转移加固学习PDF文件第3页

组合优化问题的转移加固学习PDF文件第4页

组合优化问题的转移加固学习PDF文件第5页

相关文件推荐

2023 年
¥1.0