Loading...
机构名称:
¥ 1.0

摘要 - 深度强化学习(DRL)通常需要大量的数据和环境相互作用,从而使培训过程耗时。在批处理RL的情况下,这一挑战进一步加剧了,在批处理RL的情况下,该代理仅在没有环境相互作用的预收集数据集上训练。量子计算的最新进展表明,与经典方法相比,量子模型可能需要更少的培训数据数据。在本文中,我们通过提出一种利用变量量子电路(VQC)作为离散批处理量Q-LEATER(BCQ)算法中的函数近似器来研究这种潜在优势。此外,我们通过周期性移动数据编码层中的输入变量顺序引入了新的数据重新上传方案。我们评估了算法在Openai Cartpole环境中的效率,并将其性能与基于经典的神经网络的离散BCQ进行比较。索引术语 - Quantum增强学习,批处理封装学习,变分量子计算,数据上传,数据重新上传,批量量子加固学习,离线量子加固学习。

批量量子加固学习

批量量子加固学习PDF文件第1页

批量量子加固学习PDF文件第2页

批量量子加固学习PDF文件第3页

批量量子加固学习PDF文件第4页

批量量子加固学习PDF文件第5页