摘要机器学习技术在量子控制中解决问题以及解决优化问题的已建立几何方法自然而然地探索了如何使用机器学习方法来增强量子信息处理中问题的几何方法。在这项工作中,我们审查并扩展了深度学习的应用到量子几何控制问题。特别是,在量子电路合成问题的背景下,我们通过应用新颖的深度学习算法来展示时间 - 最佳控制的增强能力,以便近似于与低维度多数Qubit系统相关的地理学(因此最小电路)近似地理学(以及最小的电路),例如SU(2),SU(2),SU(4)和SU(4)和SU(4)和(8)。我们演示了Greybox模型的出色性能,该模型将传统的黑框算法与白框模型(编码量子力学的先前领域知识)结合在一起,作为学习兴趣的基础量子电路分布的手段。我们的结果证明了几何控制技术如何使用(a)验证几何合成的量子电路沿着测量线沿着几何合成的程度,从而时间优化,途径,途径和(b)合成这些电路。我们的结果对量子控制和量子信息理论的研究人员感兴趣,该理论寻求将机器学习和几何技术结合起来,以解决时间优势控制问题。
主要关键词